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Abstract

This document will go through the process of Big Data analytics, which combines computer
science, data warehousing and applied statistics. We plan to to predict the result of Chess
matches after a twenty full movements. To do this we are constrained to work with the complete

database that was provided at the start of this project.

The Gorgo Base [12] consist of around three million matches, comes in an unknown database
format, and once we were able to read it, we were confronted with it’s size, this database is
able to overwhelm any computer that tried to compute many operations at the same time, this
was one major challenge to overcome. As with database this size, we had to spend significant

of resources filtering out missing and faulty data.

To process this database we had to tokenize it, separate it into chunks we could actually
compute, and then we started aggregating and filtering data. Aggregating data is an important
part of any dataset creation, using all the database we were for example able to capture the
average ELO of all the players we found. We also generated the score of every board later used
to predict game results. At this step we generated our test and train files, we separated 70%

to training and 30% for testing purposes.

One final challenge was to collect all the information of the board positions, this was challenging
because we wanted to keep a record of the historical results for every game that was in our
database, and to do this we had to compare and add results, and at the end we end up
recording thirteen million board historical records. We did the same with the historical record
of competitors, we stored their average ELO, and their results history, to create the competitors

database.

The biggest problem in predicting chess matches is the enormous amount of legally possible
board positions, it has been estimated at 10*® by Shanon [16] and others, but since we are not
taking into account the endgame, because we want to predict the result at an early stage, we

believe that we might be able to use the information on matches of this database.

Finally we gathered all the data from our three sources, the refined Gorgo Base, the Movement
history, and the Competitors records, to generate a dataset we could work with. We applied

an SVM with RBF kernel, and compared it to a random forest model. At the end we were



satisfied with our results, which showed us how powerful using big data is to solve problems.
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Chapter 1

Introduction

1.1 Introduction

Entertainment is a feature of human behaviour since the earliest of times, countless games
and other forms of entertainment have been devised over the centuries, one of the earliest

games recorded in relatively recent human history that it is still played worldwide is Chess, or

Checkers.

Chess is one of the most easily recognizable board games, created around the seventh[3] century
in what is now India, it started by the name of Chaturanga, it then evolved into it’s modern
version in the XVI century, and it was first introduced by the Moors in Europe. It was also
introduced through the rest of the silk road from what is now Iran, going as far western Europe

to the Chinese empire.

As in any other competitive task, humans have been looking for an advantage in competitive
chess, for this any tool available to humans were used to try to obtain knowledge, mechanics and
mathematics were used to "beat” chess from the earliest of times. Starting with the invention
of The Turk, which pretended to be a machine operated chess player, it won against notable
personalities such as Napoleon Bonaparte, and Benjamin Franklin, it attracted the attention of

the people when it played and toured the world without anyone chess playing machine. However
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the fact that a machine was able to beat humans attracted and captivated the collective human

mind at the time.

One event at the turn of the century once again gained the attention of our society, it was the
same kind of event, a machine, built by humans, could by itself overcome human competition,
in a very complex game known to be dominated by skilled players and not by chance, it was the
matches of Garry Kasparov vs IBM’s Deep Blue. It was broadcasted and constantly updated
by the media onto millions of homes, it put Chess at the spotlight, but most of all we saw how
this specialized machine was able to beat the pinnacle of the human mind and skill, the great

Chess Grand Master of the era.

This trend has continued, at the time Deep Blue was a room sized machine, but then personal
computers started beating Chess Grand Masters, and now mobile phones are able to overwhelm
human competition. Nowadays the best ” players”, are a combination of both human /computer
teams, in a variant of chess called Advanced chess, where a human player chooses a program
to help him make decisions which he ultimately makes, centaur chess as its called beats both,

human and computer chess players individually.

According to IBM’s Shanon [16], there are around 10%* possible number of board positions,
which is a lower bound estimate, thus making it almost impossible to solve the problem using
brute force, and also it explain the complexity of chess itself, we think it might be possible
that the hardware of modern computers has improved enough to provide a somewhat accurate
prediction, using advanced machine learning techniques, and database technology, using our

personal computers.

The goal of this project is to use a big database, that was provided to us, to predict the result
of chess matches after twenty full movements(after black player has moved), then use all the
characteristics and properties of the data we manage to capture in our data process. For this

we will not design an chess engine, or use more than what we have in our database.

The current document is inspired by the work that Vence [19] started doing, we are not calcu-

lating distances of pieces, as he proposed, but we are limiting ourselves to process the enormous
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database we have in hand and work with the complete database to prove that we don’t need
to be an expert on the field, or the actual game in this case, to predict the outcome of a game
if we have enough data on chess. We however use the database that was found by him which
is what kickstarted the interest on solving this problem. The next subsection will explain how

we worked through this problem and how we obtained our results.

1.2 Project Structure

We start by talking about how we structured the project, this document reflects the organization
of the code, we think, it would make easier for anyone with an interest in the project to read,

both the code and this document.

Stepl
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Figure 1.1: Graphical flow of the project.

As figure 1.1 shows we start with the Gorgo Base[12], then after we have transformed it into a
more Python friendly format we start by modifying the data. The majority of time we invested
in this project is devoted to process and transform the data from a database format, with raw
data, to a more friendly format that has more concise database. To do this, in every step of
the way we performed different kinds of routines to purge data we deemed useless, we also

aggregated data that we considered would help us better predict outcomes. These are the
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Chapters/steps into which we divided this document:

e Step 1: Presented in Chapter 2, we start by describing some of the new formats and the
steps we performed to transform the chess database into something we could make use
of. Once we were able to explore our data we started by filtering out data we deemed
irrelevant. However since the dataset was so big, it was a challenge only to read the

dataset.

e Step 2: In Chapter 3 we started to compile information about the data, and to explore
the overall dataset, although we only get a small look into the data because of its size
it’s enough for it to make us realize of some problems we had, to produce and refine the

data a little bit more.

e Step 3: Chapter 4 explains this step we make a preliminary analysis of the data, which
was made by producing some csv files about interesting information we wanted, this is
also were we determined how we were going to process the data in a grid like fashion,

because it was impossible to load with our personal computer at once.

e Step 4: Chapter 4 deals with trying to make use of our data, we started by creating a
couple of tree structures, the first one captures every sequence of boards for every read
game, each with nodes going back and forwards, we also keep track of movement number
in every game, this in another tree. Even thought we couldn’t use this as we originally
wanted, we were able to create a database using the data generated using these trees,
after we had generated our databases using all the data, we then created a consolidated

dataset for every grid element.

e Analysis and prediction: In the final Chapter 6, we build a couple of models to predict
the result of matches after 20 movements using the test dataset, we created two models to
predict matches that include draws, and another that excludes them. To do the modeling
we are using a kernel SVM function, for the second model we implemented a random
forest to compare the two methods. We then present our results, and have a discussion

on them.
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e Conclusions: We present our conclusions and possible future work directions if the

reader is interested in continuing the project.

We will also show how we went up handling the data, and for every step we made we had some

problems handling the size of the database. Figure 1.1 shows the historic size for the database,

for each of these we changed and tweaked things to making it easier on us to process !.

Description Format Size
1 | Gorgobase Original sid 500 MB
2 Gorgobase PGN pgn 2000 MB
3 Thousand files json 14,600 GB
4 Refined Json json 18,350 GB
5 | Graphs in runtime  Python >50 GB
6 Test json 4.53 GB
7 Train json 10.58 GB
8 Alt Test json 241 GB
9 Alt Train json 5.63 GB
10 Board.db sqliteDB  2.48 GB
11 Final Test csv 64 MB
12 Final Train csv 152 MB

Table 1.1: Size of our datasets.

IFor the alt versions we deleted half moves to reduce the file size.



Chapter 2

Project startup

2.1 Programming language discussion.

One of the first big, important decisions to make early in the project was to decide which
would be the programming language that we would use to develop our project. Out of all the
programming languages, we had to start with open source languages, that had big capacity to
process big chunks of data, and also had a libraries to work with statistical analysis. Python, R

and C/C++, made the most sense, each of them had big advantages over the others by design.

e Obviously R is a statistician’s war elephant, it has a wide array of libraries and a very

big community which updates and uploads new packages with functions to use and test.

e C/C++ is the most used language for efficient low level programming, which has been
around for at least thirty years, because of this is well documented, also since is open
source it has several proprietary versions, which would adds to the complexity in develop-
ing C/C++, a very passionate community that is always very open to help and implement

new libraries, such as those for statistical analysis, and machine learning.

C++ is a proper object oriented language, and unlike scripting languages like Python
2.x, is type safe, which means that the developer must declare the type of the variables

it will use. This in our opinion is a good design option because other developers will be

6
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able to see what type a variable is supposed to be, and this information is also used by
the IDE(development environment) to help the developer avoid errors by pointing out if

we are inputting a different type of variable to a function etc.

e Python in our opinion is between the two, it was conceived as a programming language,
but it is not a compiled language, which affects it’s performance in computationally
intensive tasks, this is also an advantage in some cases, by being a high level language

it’s easily portable to other systems by avoiding compilation.

Another advantage we see in it, is that it forces the users to write the code in a legible
way, by forcing indentation to properly run the code, which is a very welcome advantage
when working with other developer’s code. It also includes very good libraries, such as

SciKitLearn, numpy, matplotlib and others.

Even thought we were familiar with the three, we had not used C++ in a few years, and
Python and R were our everyday tools, so we decided to do most of the processing of the data
in Python 2.x, because it’s simple enough for us to use and it’s is also more organized and less
OS dependent than C/C++. And for the final analysis step we will use R, to create or models

and most if not all of our plots.

2.1.1 Python particularities.

Python’s GIL

The global interpreter lockdown [13], is a known limitation when multithreading with Python
2.x that was put into the system by design(in 1995 there were not commercially available
multicore systems), it does not allow the use of all the processors at the same time, it locks
the access to the interpreter by serializing it usage, the GIL does not affect 1/O tasks, such as
communications with a web service. This problem mainly affects the Thread, and threading,

class and interface in python. The GIL does not affect other Python compilers such as Jython
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and IronPython. Basically the GIL makes threading only a simulation, except when we connect

to external services.

There is another package that works like the Thread class, which has an interface similar to that
of Thread, thus making it easier to use, it’s called Multiprocessing, as the names states, it
creates a new process, which is not exactly the same as a new thread,it does get over the GIl. We
must remember that processes do not share the same memory space, so everytime we generate
a new process much more overhead is generated by copying variables and starting/terminating

the new process.

Finally Multiprocesses do not have to synchronize which make them more straightforward in

their implementation, and debugging.

This was important to us because of the large number of files, that we had, and at first we
didn’t have the environment set up for this to work with multiprocesses, so at first processing

the files took longer than it would if we had used multiprocesses from the beginning.

2.2 The Gorgo Database.

After we downloaded the database from the gorgobase [12] website, the downloaded file had to
be decompressed and transformed into a format we could read with Python, from its original
state in the Scid database format, we knew it was some sort of database because the files had a
binary format, meaning that when we opened it with a text processor, we only saw gibberish.

So we had to find a way to process this file that was in this unidentified format.

2.2.1 Shane’s Chess Information Database.

Scid (Shane’s Chess Information Database) is an open source format, that was created by the
Chess community, as a way to store chess matches to store, for later analysis. It’s also used to

view and maintain huge databases of Chess Games.
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Scid has multiple features useful to serious or hobbyist alike, it’s database format is very popular

and widely used by applications.

The gorgobase [12] is a Scid’s database, therefore it comes with the following files:

e The Index file (.s24) it contains a description for the database and a small fixed size

entry for each game. Every game includes: the result, player, event, site, name ID.

e Name File (.sn4) Contains all player, event, site and round data. This is usually the

smallest file of the three.

e The game file (.sg4) This is where the moves are actually saved, it also contains
variations and comments for each game. Scid actually only saves each move instead of
the whole board, this helps with storage, as we shall see in chapter 3.3.3. Most moves
take only a single byte, this is done by storing the piece to move in 4 bits (2* = 16 pieces),

and the move direction in another 4 bits.

To be able to read this database we used a computer program that is also able to transform
the data into another format. Scid vs , is an open source engine to play, record, analyze and
replay chess games, which is available in most platforms and it’s being maintained by what it

seems to be a large community.

We were able to load the Gorgo Base to the program, and then after looking around we found
a way to transform it into a pgn format, which was another format we were not familiar with,
however this time we had a human readable file, and we saw a file with all the games that
were on the Gorgo Base. Next we will explore this database format, and see if we could find

something useful to process it.

2.2.2 The PGN format

The PGN Portable Game Notation is a human readable format for storing chess games, it stores
both the moves and the properties of the game, it has wide support by most chess software and

libraries.
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As we saw in table 1.1, the size of the compressed database to this uncompressed database,
greatly increased the space it used in memory, we went from ”only” 500 MB, to over 2.4GB,
which fortunately was not a problem to us since we had recently increased and formated our

personal computer.

Our gorgo base now had around three million examples as figure 2.1 shows. We now had to

figure what each field meant and how to work with this format.

7~

[Event "F/S Return Match"]
[Site "Belgrade, Serbia JUG"]
[Date "1992.11.04"]

[Round "29"]

[White "Fischer, Robert J."]
[Black "Spassky, Boris V."]
[Result "1/2-1/2"]

1. e4 e5 2. Nf3 Nc6 3. BbS a6 4. Bad Nf6 5. 0-0 Be7 6. Rel b5 7. Bb3 d6

8. c30-0 9. h3 Nb8 10. d4 Nbd7 11. c4 c6 12. cxbb axbbd 13. Nc3 Bb7

14. Bgb b4 15. Nbl h6 16. Bh4 c5 17. dxeb Nxed4 18. Bxe7 Qxe7 19. exd6 Qf6
20. Nbd2 Nxd6 21. Nc4 Nxc4 22. Bxc4 Nb6 23. Neb5 Rae8 24. Bxf7+ Rxf7

25. Nxf7 Rxel+ 26. Qxel Kxf7 27. Qe3 Qgb 28. Qxgb hxgb 29. b3 Ke6 30. a3
Kd6 31. axb4 cxb4 32. Rab Nd5 33. £3 Bc8 34. Kf2 Bf5 35. Ra7 g6 36. Ra6+
Kcb 37. Kel Nf4 38. g3 Nxh3 39. Kd2 Kbb5 40. Rd6 Kc5 41. Ra6 Nf2 42. g4 Bd3
43. Re6 1/2-1/2

Figure 2.1: PGN format example[20]

The pgn file is composed of several tag pairs, which are enclosed between brackets, the data is

provided in seven fields that may appear in the following order:

Event: The name of the tournament or event.

Site: the location of the event.

Date: the starting date.

Round: the playing round ordinal of the game event.

White: white pieces player in last name, first name format.
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e Black: black pieces player, same format as before.

e Result: The result of the game, 1-0 White, 0-1 Black, 1/2,1/2 Draw, or * other, e.g.

ongoing game.

e FEN: Other important tag is the FEN tag, which is included to record partial games,

that start in a different position, or other chess variants, like chess 960.

As we can see the pgn stores each movement of the data that as we can see in it’s simplest
way is storing the movement of each white and black players, and the movement number is
indicated for each movement. But there are far more complicated examples of this types of pgn

data.

Also it’s worth noting that the data was not uniform throughout the 2.8 million games, for
some games there were some data missing, and some had more fields, which had to be filtered

later.

After encountering that there were some matches which didn’t have the same format, as figure
2.2 shows, we realized that we would need some sort of a library to process matches such as
this, and since this was actually a format that the chess community had created, we thought

we might find a library that would help us process it.

2.2.3 Breaking down our database

When trying to process data files as large as this, one must take into account that any file
stored in our HDD, it will increase its size if we load it into main memory, therefore we will
need much more capacity to be able to load it, and even though we had sixteen gigabytes of
main memory space, we couldn’t make it work, we first started trying with a scrip from Rasmus

[6] that we thought could help us, but couldn’t make it work because of the size of our pgn file.

Then we came up with the idea that if we divided the large database we had into smaller files

we could be able to process each one of them independently without problems. To split the file
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[Event "2nd HM Corus"]
[Site "7"]

[Round "7"]

[White "Matous, M."]
[Black "[+0034.20e6g4"]
[Result "1-0"]

[SetUp "1"]
[PlyCount "17"]
[FEN "3b4/8/4KnP1/7P/6k1/2N5/8/8 w - - 0 1"]

1. h6
(1. g7 $2 Kxh5 2. Kf7 Ng4 )
. Kgb $1 2. h7
( 2. g7 $2 Kxh6 3. Kf7 Kh7 4. Nd5
( 4. Ned Ng8 )

[EY

4. ... Ng8)
2. ... Nxh7 3. g7 $1

( 3. gxh7 $2 Bf6 4. Ned+ Kg6 5. Nxf6 Kg7 )
3. ... Nf6 4. Kf7 $1

(4. Ned+ $2 Kgb6 $1 )
4. ... Ng8 $1

(4. ... Kf4 5. Nd5+ )

(4. ... Kf5 5. Nd5 Ng4 6. Ne3+ $1 )

(4. ... Kh5 5. Ned $1 Ng4 6. Ng3+ Khd 7. Nf5+ )

(4. ... Khd 5. Ne4 Ng4 6. Kgb Neb+ 7. Kh7 )
5. Ne4+ $1

( 5. Kxg8 $2 Kgb6 $1 6. Ned
( 6. Nd5 Bgb $1 7. Kh8 Kh6 $1 8. g8=Q
( 8. Kg8 Kgb6 9. Kf8 Bh6 )

8. ... Bf6é+ $1 9. Nxf6 )
6. ... Bh4 $1
(6. ... Bc7 $2 7. Kf8 $1 )
(6. ... Bb6 $2 7. Kf8 $1 )
7. Kh8 Kh6 8. Kg8 Kg6 9. Kf8 Be7+ $1 10. Kg8 Bh4
( 10. ... Ba3 {(or} 11. Nf6 Bb2 12. Kf8 Ba3+ )
)
5. ... Kf5 6. Kxg8 Kg6 7. Kh8 $1 Kh6 $1 8. Nf2 $1 Bf6
( 8. ... Bb6 {(main} 9. Ng4+ )
9. Ng4+ 1-0

Figure 2.2: Complicated PGN format.
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we would need to be careful not to cut down games in the pgn, so we had to figure out a way

to do this more cleanly.

To achieve this we divided the file by obtaining the length of the file divided by a thousand,
but before we even cut the file, we had to find first where the PGN started. If we remember
from figure 2.1 the starting point of the PGN is a blank line followed with a line starting with
the opening bracket, the ”[” character, having this in mind we created a recursive function,
shown in code snipped 2.1, that would start at a point where our initial division gave us, and

then move ahead until it found this pattern

//split_pgn .py
def goToPGN_Start(data, i):
if (len(data[i])<1):
if not (data[i—1].startswith(”[”)):
return i
return goToPGN_Start(data, i-—1)

Code Listing 2.1: Recursive function to split the 2GB file.

After we had all the starting points for each game, we then wrote the range of lines corresponding
to each of the corresponding files, with this we ended up with a thousand two megabyte files,
instead of a 2 gigabyte file. Now we were able to process our database in a more comfortable

way without breaking down our computer.

2.2.4 JSON format

Now that we had a way to process the files independently, we decided we needed to convert our

PGN files to JSOn, a more known and straightforward ”database” file format.

JSON(JavaScript Object Notation) is a lightweight format that is used for interchanging and
storing data. It’s format is simple to understand and it has wide support in several programming

languages, applications, libraries etc.

We found a script useful to change our pgn file to a json format on github [6], that we modified

to serve our purposes but was a very good starting point. However we also added something
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that we thought would be useful, we converted the movements that are shown in the pgn file
into complete boards, this was not a fast computation because for each of the three million
games we have on average 40 movements each, as shown in our analysis in appendix A.1, so
to try to increase a little bit the speed we tried using the threading class in Python, which

unfortunately was useless because of the GIL we saw in section 2.1.1.

The board conversion was done with the help of the PythonChess [10] library, it reads the pgn
movements and converts it using the function board.fen(), this will show the entire board,
movement by movement, this will be useful later on the project, and also added a bit of a

problem.

~ )

"Event": "Open",

"Site": "Liverpool ENG",

"Date": "2007.09.03",

"ROund" : n 1 1] 5

"White": "Minnican, A",

"Black": "Frith, Robert",

"Result": "1-0",

"WhiteElo": "2110",

|IECDII . I|AOO|I 5
"fen": ["rnbgkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1",
"rnbgkbnr/pppppppp/8/8/8/2N5/PPPPPPPP/R1BQKBNR b KQkq - 1 1",

"3r1k2/p5pp/1pinp3/2pb4/2P3P1/PP1R3P/5B2/4R1K1 b - - 0 27"]
}

Figure 2.3: PGN to JSON(shortened).
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As we can see in figure 2.3, our first json file is almost like the pgn, it looks familiar enough,
however notice that instead of having movements represent the state of the board, we had the
complete board for every half movement. This increased massively the size of our dataset, as

seen in table 1.1, it went to up to 14 gigabytes, from a little more than 2 gigabytes.

2.3 ELO

So far we have seen talk about the ELO, statistic, some of our readers might have heard of
it from Baseball games, or NFL games, or even as a replacement for the controversial FIFA

ranking of football. However ELO, was originally proposed and is named after Arpad ELO([T7].

Historically the highest ever rated players are in the range of 2700 and 2800, and the average

ELO of competitors in a national tournament is 1500 with 250 of standard deviation.

Next we present how to calculate the ELO of a player in equation 2.1,

¥ D,
)

K
—= _ — L
Ruew = Roa + 5 (W = L+ 55

(2.1)

W is the number of wins, L the number of losses, D is the opponent rating minus the player’s

rating, C' Is equal to 200, and K is 32.

The ELO captures the strength of a player, it compares the previous performance with the
latest versus other players, and it respond rapidly to unexpected losses or victories. The ELO

is well known as a predictor of the outcome of a match.

At the end of this Chapter we are now able to read the files and see what’s going on, however
as we can see in the FEN field, we still have some work to do in refining the data, we would
like to know what data we have and for this we’re going to have to continue to process and

refine it, as we will see in the next Chapter.



Chapter 3

Data Cleansing.

We define data cleansing as the process during which the data is transformed from it’s raw
form into a more processed standardized form, in this chapter we will see how we manage data
cleansing problems such as inconsistent data, incomplete data, missing data and erroneous
data. Data cleansing is always an important part of data warehousing and data analysis, it
would help us to have better predictions if we pay close attention to our data, an make sure it

doesn’t have any inconsistencies that might introduce undesired noise to our prediction models.

Since most of the data in this database was introduced by a human process, it has several in-
consistencies, as expected, we alleviate this problem in this chapter and we also start producing
some interesting information about our database in hand. To solve this we had to process the
data, this implies we had to treat it, this is when we start to create some code infrastructure
that we will later use to the data aggregation phase, but this will also be useful to perform the

data cleansing.

3.1 Reading our dataset.

Once we had the data in an easier to read format, it was time to start manipulating the data,
but before doing this, we needed to know what the chess.python library [10] added along with

the board information

16
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3.1.1 The Forsyth-Edwards Notation (FEN)

The FEN notation is a well known standard for describing the specific board position of a chess

game, as well as other information regarding the description of the game in hand.

Taking the following fen notation from the Figure 2.3,

rnbgkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1

We see that the record has six fields separated by a space[l] The fields are:

1. The board, the pieces are named in English( P = pawn, N = knight, B = bishop, R =
rook, Q = queen, K = king). White pieces are represented using upper case characters,
black pieces are shown using lowercase characters. Empty spaces are annotated using the
number of empty squares. The board is shown from whites perspective, and ” /” separates

the rows.
2. Active color, w means it’s whites move, b means it’s blacks turn to move.

3. Castling availability, K/k means player can castle on the king’s side, Q/q player can castle

on the queen’s side.
4. En passant availability for a pawn.

5. Halfmove clock, the number of halfmoves for each player to determine if the game is a
draw, depending of the rules of the particular game/tournaments, games can end in a

draw if the clock reaches fifty.

6. Number of full moves, incremented after Black’s move.

Rethinking of the FEN.

Since we thought we would be able to perform some operations on the individual boards, we

thought it might be better to replace the numbers shown in the FEN, with a string that indicates
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that they were representing the same characteristic in the board, this certainly increased the

size of our dataset as table 1.1 shows, we thought that we were adding something of value.

We replaced each of the numbers in the FEN data with points ”.”, the thought was that this
will be better to interpret if we used it for pattern searching. To do this we used a combination
of regular expressions and the string library in python, to read the numbers and replace them
with the number of characters that were indicated by the number. This is found in the board. py
file. We also got rid of the extra information on the right, however if we were to produce a
better evaluation of pieces, as section 3.2.1 refers, one that reflected possible movements by

player, we would need this information.

Our new FEN pattern became:

[ rnbgkbnr/pppppppp/........ [ [ [ /PPPPPPPP/RNBQKBNR

However after doing a few test we discovered that we wouldn’t be able to perform any operation
on these strings, other than using them as ID’s, however this didn’t impact negatively in our

project, so we left it like it was.

3.2 Filtering the Gorgo Base.

Since we had a somewhat inconsistent database, we started by selecting a few fields we thought
might be useful in the future. As we saw in figure 2.1 and figure 2.2, our games had fields that
appeared only in a few matches, therefore to reduce our database size we filtered some of the

data, and at the same time we standardized our database to contain only the following fields:

White | Result
Black | Name
White Elo | Round
Black Elo | FEN

Table 3.1: First filter of our data.

We were accepting missing values for all of these fields except for the result field. With this
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we aimed at making the dataset a little bit more consistent, for example a game that had no
conclusive result would be useless to us. This would be a recurring theme in the development
process, we continued to purge games that contained faulty information, or improve on the

data as we later will show.

3.2.1 Chess relative piece values

At this step we thought that having an evaluation function to obtain a metric of the board, that
would show us who, if anyone had any advantage. Using piece values that are widely known,
these values ignore the position in the board of the pieces and the availability of possible
movements per player, which is what more precise evaluation functions do, as shown by[9]. We

will discuss the usage of this table in section 3.3.4.

Name Value

A Pawn 1
£ Bishop 3
% Knight 3
E Rook 5
W Queen 9

& King 200

Table 3.2: Value of pieces

3.3 Interpretation of data.

The next step we wanted to do was to standardize the data, because the dataset was so
enormous, it contained all kinds of games, with some of errors and missing data, thus we

had to process it, and to process it we had to manage the data that we were reading.

Figure 3.1 shows the final class structure we built to process the data we considered would be
relevant in the prediction stage, table 3.1 shows those fields, after making this first process,
trough the data we were going to eliminate mainly those fields that didn’t have a result, or

those in which the starting FEN was not the the standard one, and later we added a more
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BaseClass

name

as_dict()

toStrFormat()

A
Competitor

avg_elo : NoneType
elo : list
n_games : int .
p_draw : float Game
p_lose : float ID : int
p_win : float belo
result : list black
add_result() Event ;:”::m
cale_avgElo() Al - Board
count_result_number() maxDate {jr?_ii‘{dl + Nonelype
get_dict_stats() minDate re-;'ull
get_elo() - , _— e
get_relevant_stats() di?—‘ﬁf;%() ::?;]:)d readFen()
init_prob_result() get_d white
init_result()
newElo() as_dict()
print_relevant_stats() init_fenless()
set_draw_percentage() re_init()
set_lose_percentage() toStrFormat()
set_matches_played()
set_stats()
set_win_percentage()
short_init()

Figure 3.1: Class diagram Competitors, Games, Events.

complex filter that we explain in section 3.3.1. This would reduce our dataset from 2.8 million
games, to around 2.1 million games, although we lost a high percentage of games, because of

it’s sheer size we think it won’t make a difference.

3.3.1 Python classes

In Python as in other object oriented languages, there is a global base class, which all objects
must inherit, in Python this class is the object class, and as in other languages such as Java, it
has class methods that are predefined, such as __name__, notice that all of these special methods,
start and end with double underscore, there are also other methods that are predefined by the

object class to be customized by the developer.
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Next we present our base class that we used to inherit to the rest of our classes.

//base.py
class BaseClass(object):

# name = 77 # static class property

def __init__(self, name):
# constructor
self .name = name

def __str__(self):
# returns string conversion when needed
return self.name

def __repr__(self):
# useful for debugging purposes
return "name:%s” % (self .name)

Code Listing 3.1: Python class example

Here we see the two types of class properties that are defined in the object class which we
are inherit(as all other classes in Python do). First we define our constructor, which we use to
assign our object property, name, notice the commented line right below the class definition,

that is a global class property, and it’s a static property.

The difference between the two is that the class property is seen and can be modified by all
instances of the class, and the object property is unique for every class instance. This small
difference caused us some problems when implementing this simple class structure, because
compared to other languages, like Java, the static class methods are very clearly defined, but

here in Python it completely depends on where in the code is the variable declared.

The next two definitions were defined for debugging purposes, we sometimes needed to print ob-
jects and since these two definitions are known by compilers and the Python language designers,

we can take advantage of their use.

e __str__ helped us when printing an object we could simply write print object and it

would print whatever definition of the object in this method.

e __repr__ this was also very useful because in the IDE’s debugger this property is used to

print the object definition, which we replaced by our own method which sometimes was
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the number of games this object had participated in, or the win lose draw percentage.

As the object Python class, we used the BaseClass to start all the classes, we defined the most
basic properties that all of our classes would be using and defined a few of properties that later

we accessed via the super clause.

Our classes.

As pointed out in section 3.3.1, we created this small package of classes for the purpose of

collecting and processing the data from the Gorgo base.

For each of these classes we created a simple way to initialize the data, and then we added a
new constructor for the class because it was not very clear how to do this because in Python is
impossible to overload a function. To solve this we used the decorator @classmethod, which
creates a method that is bounded to the class, but not to any particular instance, with this
we can create several constructors that return an instance of a class. This will be useful when

obtaining and manipulating data after we preprocessed it.

3.3.2 Events.

The events are the tournaments, that contain several matches, and rounds, they also defined
a date. This was a particular headache because the data being not very refined, the date
came in different formats, that we had to process. The Python community developed|[2] a very
comprehensive parser that could handle most of our dates formats, as they were presented, in
DD/YY/AA, written form or many other forms. With the help of the dataparser library we

were able to move over this problem right away.



3.3. Interpretation of data. 23

3.3.3 Competitors

Usually when you find a database over the Internet, no data cleaning or preprocessing has been
performed, we usually find that it has not been cleaned, some redundant data, slightly different

names for the same thing etc.

Abbasov, F 1
Abbasov, Farid 1

Zulfugarli, M

Zulfugarli, M.
Zulfugarli, Magomed

Figure 3.2: A player is shown in different entries.

Figure 3.2 shows, as expected some problems, where with dataset of this size we notice data
redundancy in respect to the player’s names. We see that there’s a high probability that there
are several players that were captured with slightly different names, thus they could be counted
more than once by the program whereas they were all the same player. Because of this we
created a method that tries to collapse several players that are named with a similar name into
one, this could be important later on the process of analyzing players. Although didn’t merge
all the competitors with different names, we did merge all redundant names in the database we

solved some of these problems.

Apart from the name, using this class, we created a method in which we created a dictionary
of players which stored a name with a list of ELO’s we found related with this name, using
this information we created an average ELO, of each player we found. Using this in the next
iteration of our dataset we added a couple of new fields that we named, white_avg_elo and
black _avg_elo, which we later use to filter games, all of our games have an average ELO

regardless if for a match they have ELO or not.

Later in the development of Chapter 5, we added a little bit more information on this dataset,

that we used to capture the record of the player, in wins, losses and draws.
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3.3.4 Board

The board class, handles only two functions and we only use them in the second step, where
we refine and discard data. We first replace the FEN from the original conversion, and replace

the numbers in the fen with dots ’.’.

Before:
rnbgkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - O 1
After:

rnbgkbnr/pppppppp/ . . ... ... Y/ [ooiii.. Y /PPPPPPPP/RNBQKBNR

This of course would increase the size of the files we're using but we believe it might help us

predict a bit in the future.

In the board class we also generate a new field, "fen_eval”, which is the evaluation of every
board position that we store for every game. This operation took a while to do because of the
fact that we had around two million games, with each having on average 40 moves. To evaluate
each game we used regex to separate and return only the lowercase, and uppercase letters for
each of the rows of the board, then we obtained the numbers for both white and black, we then
return the subtraction of the value of the pieces as table 3.2 shows. If any particular player

had more important pieces on the board this would be reflected in the ”fen_eval” field.

This might be a simple way to evaluate the board, but since we had limited time to develop
this system we opted for the most simple solution, there are many many proposals, but the
ones that are more successful in determining who has an advantage over the other player, are
the ones that consider number of available legal moves. We tried very quickly to implement
this via the pythonchess[10], it has function Board.legal moves which returns the legal moves

for the overall moves, but not for each of the competitors.
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3.3.5 Games

Essentially the database are records of games played over time, it made sense to us to use the
same format to iterate through the database over the same concept, so we organized the other

classes around the Games class as figure 3.3 shows.

board competitors events
games

Figure 3.3: Packages Diagram.

Before computing the whole games, we first computed all the competitors over all of our files,
then with the ELO list that each competitor had we calculated it’s average and saved it as a
new property to track in our the In the Games class we do not perform difficult computations,
we replace the format of the FEN win/lose/draw, with a simpler one, 1 for white, 0 for draw,
and -1 for black. we only store the other instances related to each game, like the event, and the
players competing in a particular game. To process the games we load the competitors that
were previously processed, and processed each game, load the event from the data, and then
call the Board class to obtain our formatted FEN, and the ”fen_eval” from the board and add
them both to different list. Then we return a dictionary of the game and the relevant fields, to

be stored in a new JSON file.

At this point we would still need some new modifications to our data but with this we were

happy to start working and knowing about our database.

Continuing At the end of this chapter, we have generated a new json file which only included

our desired files, as we talked about in section 3.2, we had some fields we were interested in,
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then during this phase we aggregated some data and we ended up with the following adding

the following fields and creating a new json database with the fields presented in table 3.3

White

Black

White Elo
Black Elo
White Avg Elo
Black Avg Elo

Result
Name
Round
FEN

fen eval

Table 3.3: Final json attributes.

In the next chapter we will start working out some data to try to create a more refined version

of our dataset.
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Grid Creation

4.1 Processing large quantities of data

During the development of this project we encountered with the computer processing for long
hours, which for us was a very different experience with programming because once we set a
program running, usually in a few seconds we would get the result, however this was not the
case for this project and sometimes we encounter problems that we did not expect,the program

would throw at us some errors, that we would found out hours later only to start over again.

To try to alleviate this problem from the beginning we tried to use the threading library, but
realized that they were not effective because of the GIL 2.1.1. This was a bit of a frustration
for us, but then we learned that the multithreading library was not affected by the GIL, so

we investigated how to use it.

4.2 The multiprocessing library

The multiprocessing library, introduced in Python 2.6, backs spawning a process in our local
processor or a distributed system, the biggest advantage for us is that it uses an API similar

to that of the threading, that we knew beforehand, so this was something we were happy to

27
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def f(x):
return x*x

if __name__ =— ’__main__":
pool = Pool(processes=4) # start 4 worker processes
# print [0, 1, 4,..., 81]”

print pool.map(f, range(10))

Code Listing 4.1: Simple pool.map example

use in our project. Another advantage that we had while using the multiprocess is that we
will be processing the files independently of each other, so having the data treated in different
processes makes this faster, and since we are not interchanging data from one process to another
simplified its implementation, because we did not have to worry about locks or synchronization

errors etcetera.

Even thought there are different ways to implement the multiprocessing [14] library we imple-
mented it using the Pool object, which is implemented in the same way as the saapply/lapply

in R, as the following example shows:

Notice we have a definition of function £ and we pass the function to the map method with a any
list, for our function to process. Pool.map returns a list with all the results in a synchronized
way, meaning it respects the same order of the input list. There are other, faster methods
to do this asynchronously, but we didn’t use them. We used this function for the rest of the
project as a way to process independently each of the files we generated, which helped us reduce

processing and waiting time to theoretically a quarter of the time.

4.2.1 Grid Creation

Since we couldn’t read the whole dataset and perform operations with it before our computer

completely stopped working we had to devise a way to operate the data and still obtain relevant
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results.

Our data had been separated in a thousand files, as we explained in Chapter 3, that contained

many types of games and tournaments, from amateurish level to the big great masters.

To better handle this, we decided to order the data into a hundred files, that would then be
separated into test, train files. To do this separation we used a dataset that we generated
using all the files, with the names and average ELO, of all competitors. We decided to use a
hundred separators instead of a thousand because our computer was able to organize and process
several files at the same time, and we calculated that a hundred files would not overwhelm our

computers.

Grid

2000 2500

Black Elo
1500
l

1000
|

500
|

| I | [ | [
0 500 1000 1500 2000 2500

White Elo

Figure 4.1: Plot of the grid showing mostly division with White ELO.

This helped us distribute the data in an equal way, in ten different ranges, with more or less

equivalent number of games, for white, and for each of these ranges we created ten black ranges.
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The white ranges contained around twenty thousand different games, and for each of the black
ranges within each white range, it had around two thousand different games. We present the

exact ranges in the appendix A.2.

To select the ranges, we condensed all the data into a csv file, that we then loaded to R
with the data.table library to process large files. And then using a combination of ggplot2’s
cut_number to cut the whites in 10 roughly equivalent sets, we then proceeded to cut the rest

of the data.

Once we had the ranges we processed the data in python. We selected a path where using a
UNIX command we created a hundred folders, one for each of the grid. Then for every file
we had, we would check every game’s white and black average ELO, and then assign them we
would write in each of these folders write a file corresponding to the file that was processed.
We did it this way to avoid having synchronization errors, by creating an output file for every

processed file we would avoid writing twice by two different processes in the same file.

for num in {0..99%};
do mkdir $num;
done

But comparing every game with 10 ranges for white and then compare the black to other 10
different black ELOS to find the correct position for all 2 million games, would be extremely

demanding computing wise.

To avoid this problem we used an old programming technique, interchanging computing de-
mand for memory demand. We created a function that returned the column of the white it
corresponded and, with thus number we then had each of this dictionaries pointed to the cor-
responding black dictionaries, with this we obtained the proper grid number without making

many comparisons.
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Complete Grid
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Figure 4.2: The grid with Black and White Subdivisions.

Train/Test dataset creation.

After we had 100 folders that represented the grid number, each containing files to be merged
into one, to merge them we used a UNIX command, once we had done this we proceeded to
separate the data into two different datasets. To do this we used an uniform random generator
function to select whether a game would go to the test or train dataset, we decided to have

70% of the games stay in the training dataset and the rest went to the test dataset.

At the end we had one folder for testing and another for training.
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4.3 Social Network Analysis.

The topology of social networks have been the subject of profound study in recent history. It
has been identified that networks such as these play an important role in many systems, and

examples range from computer networks,the propagation of information in social networks etc.

4.3.1 Community detection.

Social networks have been found to have community structures if the vertices of the network
can be grouped into sets of vertices, this means that a community structure set of vertices
will be densely interconnected internally, and sparser connection between vertices of different

groups will be made.

4.3.2 Walktrap community detection.

This measure tries to find densely connected subgraphs, also called communities in a graph via
random walks. The idea is that short random walks tend to stay in the same community. This
is reflected figure 4.4 we can see that the Grand Masters play each other regularly, and thus

they know each others style of play.

To do social network analysis we used igraph [8] to read our data and then obtain some basic
statistics of our graphs at hand. Which is very simple to use even thought its documentation

is hard to digest, and it’s a beta API.

Our main goal of doing social network analysis, was to obtain information about the players,
what’s the difference between the grid 0 where the ELO of both white and black are low, or

the grid 99 where the ELO of both white and black player is the highest.

We started by performing a summary of the graphs for the rest of the grid, to see if we could

find something interesting in any of the rest of the grid.
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Figure 4.3: Community walktrap grid zero, second try.

We defined the following terms:

N: number of vertices(also called nodes or points).

E: number of edges(also called arcs or lines).

k: mean degree, defined as: k = E/N .

0: Network density of edges. Defined as: § = W’il) .

Each of these basic statistics will help us determine which dataset in the elements would respond

more favourably to an analysis made based on the players.

We present here a small version of our table of properties we generated, you can see it whole in

appendix 4.1, we notice that for example the number of N(vertices) and E(edges) are two to
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one, which is close to a completely random graph, we believe this is due to it having the lowest

ranked players, in the events registered by the database, which are usually not constantly in

tournaments that are much more players like that.

Z1 N E K 5

0 | 12060 18274 1.51 0.00025
113371 17884 1.33  0.00020
2 | 13504 17308 1.28 0.00018
86 | 853 15763 18.47 0.04327
87| 765 14866 19.43 0.05073
88| 985 15558 15.79 0.03203
89| 971 14174 14.59 0.03003
00 | 9834 15711 1.59 0.00032
01 | 3952 15607 3.94 0.00199
92 | 1881 15121 8.03 0.00854
03| 1216 15198 12.49 0.02053
04 | 867 14995 17.29 0.03985
05| 663 14740 22.23 0.06696
06 | 463 14987 32.36 0.13952
07 | 464 14640 31.55 0.13570
08 | 448 14484 32.33 0.14401
09 | 450 14263 31.69 0.14055

Table 4.1: Summary of network properties for selected grid elements.

If we look at the last elements of the grid we can see that both the £ and ¢§, have increased

significantly, and this is the case specially the case where the highest values for white and black

are represented. This makes us think that having information of the player might help us better

to predict any result in this part of the grid.

We then continued to reduce it as we suspected that the data of this particular dataset, as

figure 4.3 shows, it has a very low mean degree, meaning than most of the vertices had only

one edge connected to it, thus rendering any analysis of competitors very hard to subtract any

conclusion or heuristic out of graphs such as these.
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Figure 4.4: Community walktrap grid 99.

Here we can see that there is more community, and so we checked what was the percentage of
winning for some of the participants, which for the most part are grand masters, at least in this
level and close to these levels. We think that we might be able to use a sort of history between

competitors in these levels to successfully predict a result.

4.4 Summary Statistics

Using the data and the classes from the last two chapters we were able to generate some basic
statistics, as shown in appendix A.1, we created a few summary statistics for our grid (explained

in Chapter 4).

Table 4.2, shows some basic statistics of the game in which we figured
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# %W %B %Draw pu median
0 0.60 0.21 0.18 39.64 38
1 046 0.30 0.23 40.28 38
13 033 0.33 0.33 40.93 40
14 0.27 0.39 0.33 41.13 40
15 0.22 0.45 0.32 41.54 40
32 048 0.20 0.31 41.48 40
33 040 0.24 0.35 41.32 40
34 033 0.29 0.37 41.16 40
76 0.28 0.19 0.52 38.73 38
77 0.22  0.22 0.54 38.41 38
78 0.18 0.27 0.54 38.64 38
79 0.14 0.35 0.50 40.78 40
95 0.36 0.12 0.50 41.78 40
96 0.31 0.13 0.54 41.16 40
97 0.29 0.15 0.54 41.81 41
98 0.26 0.18 0.54 42.38 41
99 0.23 0.23 0.53 43.23 41

Table 4.2: Summary statistics(short).

We also generated a couple of plots to compare how the difference in ELO, would change in
the result. Figure 4.5, shows the box plot of all matches according to the absolute value of the
difference in average ELO of players, to the left we see those matches were the ELO difference

was lower to two hundred, and to the right those whose difference was bigger than four hundred.

If we look from the left we would see that our, the biggest the negative difference is(meaning
black player has highest ELO.), we get the highest likelihood of black players winning, and the
same is true for the white player. Looking at the second box plot in figure 4.5, we see that the
same holds true, and we find that a higher proportion of games goes undecided, after many

moves, this is probably because of the fifty movement rule we explained in Chapter 1.

Table 4.3 shows what we were suspecting, a lot of games that are decided either to early or too

late, taking forty movements as the expected number of games of a match, go on to draw.

Next chapter we will continue to look into the dataset and add a few new data we can use to

get more knowledge of our dataset.
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Figure 4.5: Box plot of our figures.

n black draw white

<20 199748 6.51 80.67 12.82
30 370939 23.85 36.86 39.29
40 528266 32.77 23.30 43.94
60 707847 32.56 28.89 38.55
>60 235781 30.05 36.95 33.01

Table 4.3: Result percentage



Chapter 5

Data Consolidation

5.1 Nodes and movements

Now that we had somehow refined the dataset to a level we desired, we continued then to
process a little bit all the data into something we thought would get the most of the sheer size
of the dataset. To this end we started to think how best to gather all the data into one structure
where we could manipulate and access easily compared to what we had in the beginning of the
project. We spent a good amount of time during this phase of this project because we tested
the code so that we didn’t have any bugs, while counting or doing operations with the node,

and movement structure, more details in the following subsections.

38
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5.1.1 Nodes.

We started by creating a node class that would help us to save
and record all the movements that we register as we moved
through the database. We created it as a tree data structure,
in which we would save it’s previous and proceeding nodes by
it’s id, which in our case it was the complete board. In this
case and for explaining purposes is better to remind that node
is equivalent to board position, since we were creating a new
node for a new board position, and if not we would add the

relevant variables to the already existent node.

5.1.2 EndNode Subclass

We had two separate types of nodes, which was the root node
and the end node, which as indicated by the names contained
the initial node with the start of all standard chess games,
and the end node was saved with the name END, to which all
nodes pointed to. As figure 5.1 shows we created a subclass

of Node, to handle the root node and end node

As mentioned in section 3.3.1 we overloaded the __str__ and
the __ref__ methods to debug our methods and the collection
of data, we used them mostly to show statistics that we were

interested in knowing and debugging the collection of data.

A great advantage of this is that all the methods and sub
methods were present in the subclass, so we only implemented
a few methods that we considered special for this objects,

however it wasn’t that useful because of the type safety in

Node

ALLNODES : dict
all_nodes : NoneType, dict
back_nodes : dict
forward_nodes : dict
frequency : int

id : int

id_all : int
movements : dict
name

results : list

score

add_backward_nodes()
add_forward_nodes()
add_movement()
add_movements()
add_node()
add_nodes()
add_result()

addition()
append_node()
calculate_frequency()
check_nodes()
count_result()
get_black_victories()
get_draw_results()
gel_movement_total()
gel_movements()
get_nodes_weight()
get_number_games()
get_ordered_backward_nodes()
get_ordered_forward_nodes()
get_result_string()
get_results_proportions()
get_stats()

get_tuples()
get_weight()
get_white_victories()
init_back_node()
order_out_nodes()
print_all_nodes()
print_branched_nodes()
save_all_nodes()
set_score()
sort_vertices()
test_added_nodes()

iy

EndNode

end_node : bool
results : list

init()

Figure 5.1: Node class.
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Python is not enforced, however we took advantage of this

structural change.

Class Variables.

Also called static variables, we created two class variables that
would be threated as pointers to which all the objects cur-
rently collected would point to, we had to do this in order to both, have a method of readily
access and add new nodes coming, and also to avoid having the garbage collector delete all the

data that was generated. This method was

ALLNODES: We defined this variable because sometimes we had a hard times not losing
data when changing of scope, so this would be available at all times when we needed it to be.
We created reflection of this data because we were trying to serialize the objects we created

using cpickle.

ID_STATIC: We thought of using an ID to replace our usual identifier, because it was
creating a lot of memory problems due to it’s size, since each of the grid members had around
200,000 unique board(or FEN) positions, so we thought we might be able to use this with a
conversion table. However we couldn’t use it because of the sheer size of the dataset, we also

tried to hash the FEN string to no avail.

Object Variables.

Also called object properties, we created a few variables that helped us follow up with the

relevant data that we were interested in.

Back and forward nodes: These two variables are a basic part of a tree dataset, these are

dictionaries that contain a list each, at first we had the number of times that such a node we
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had encounter, and also the object of the back/forward node, however we had to change it to
be a simple dictionary that, for any FEN(board) we had connected, the dictionary returned

the number of times it had been encountered. These two variables are handled separately.

Results: We created a list that saved the result of the matches that passed through any node,

this would help us determine the percentage of white victories, draws or black victories.

Movements: This is also a list that contains the number of movement this a particular node

appeared.

Other variables.

e name: Name of the node, which is equivalent to the FEN of the board.
e Id: Unique identifier of this node, the number is determined by order of appearance.

e score: The evaluation of the board, from fen_eval in our json database.
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5.1.3 Movements

We created the movements because we thought this approach

might also be useful to us, the movements will represent what

Movement

ALL_MOVEMENTS : dict
all_movements : dict .
lasﬁmive_mem meaning we would capture the half-movements(when a player
n ack :nt
n_draw : int .
0 white : int moved), but then we decided to erase these half movements
next_movement
nodes : dict
number_str : str
total_movements : int

add_node()
add_result()
i}dd_l‘re-“ll(lj*() We based the architecture of the class in that of the nodes,
req_fre
get(inumqber_nodes() . . . .
get_ordered_backward_nodes() because it would be easier to us to maintain the two somewhat
get_results_string()

init_last()

init_node()
initi_all_possible_movements()
save_all_movements()
set_last_movement()
sel_next_movement()
set_total_movements()

the data had, at the beginning we tried processing all the data,

to save processing time and storage space. So at the end we

end up representing the complete moves.

related classes.

Class variables.

Figure 5.2: Movement class.

ALL Movements: Like in the node class we created this
variable to avoid having trouble with the scope of the vari-

ables.

Object variables.

number _str: We used the number as the identifier of the movement, we had relatively low
number of movements, because as pointed out by [16], and as shown in our appendix A.1, on
average the duration of a game is around 40 movements, but there were some other matches

that were substantially longer, with the longest being around 160 movements.

nodes: This was only a dictionary that saved the FEN as the key, and the number of times

that we had encountered this board position in the same movement as value.
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Rest of variables: The rest of the variables we used them to count the results for every node,

that passed through this node, this variables would later be used for our prediction function.

Unused implementations.

For these two classes we dedicated a lot of effort into trying to make them work correctly, at
first we were working with the original thousand files. Since we would be working with these

files separately, what we did was to process the files, and then save a pickle of the data.

However we after testing with the processed data, we noticed that it was noticeably slower
loading pickles from python, compared with processing the files using, the nodes and movements

classes.

With this came, several ways to merge our libraries, that ended up not being used because our

computer would crash everytime we tried to load more than a few files at the same time.

5.1.4 Creating the graphs.

To collect and create the graphs, we used the other file, in the folder, the class files don’t
implement anything, and everything is done with both, process_data.py, which contains the
methods that select the files to be processed, remember that we're using multiprocessing to
reduce computing time. The file that coordinates and computes the graph formation is the

stats.py, it also contains other methods.

5.2 Personal computer hardware limitations.

We developed this project in OSX, we had just recently reinstalled everything, because we
changed our main drive, from mechanical technology(HDD), for a newer electronic technol-
ogy(SSD), this was because I didn’t want to buy a new laptop, and I figured I would be better

off just buying a new hard disk, and more memory, we also expanded RAM to sixteen gigabytes.
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And this was very important, as we have seen in data base management, and data warehousing
when designing a query one must be very careful as to maintain the principal queries, and their
answers in memory, because every time we try to access gigabytes of data that is in magnetic
memory, even the time the needle it takes to read from the disk counts, this is relevant because
if we remember how operating systems work, once we have ran out of temporal memory, the
OS starts using the main memory, to cache some processes that are in the pipeline, and even
thought we had a flash like memory connected to this cache, it was impossible to process all

the data we had.

Thus we decided to try to create a database to handle all of our board data, it was much simpler

than we thought and this was a really good decision in the long run.

5.3 Board aggregation.

5.3.1 Our simple database.

The database we used was Sqlite [17], is a very simplified version of a database, in which you
don’t need to start a server(or at least codify it), and that it’s implementation in Python makes

it as easy as opening a file, but we still need to query the database.

Sqlite is widely used in smartphone applications, it’s based on SQL, and it is also well supported
by the documentation. Something very important, it has most of the well known properties
and functions of SQL, but not all, since it’s a compact version of SQL, however as we will see

we were able to take advantage of what was available.

The library in Python for Sqlite, is Sqlite3, and it’s simple to use. To use Sqlite, we relied
on what we had built before, in this step we used particularly the nodes graph, in which we
recorded the number of results of any board position we had encounter, however the problem
we had is that we couldn’t sum them all into one big access, and since we had to "merge” all
the data from 100 files, we had to somehow do something to handle collisions, where a board

was present in more than one file, to do this, we let the database handle it by using triggers.
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5.3.2 Database design.

For our database, we didn’t use anything very complex, we know that databases can be exported
from a class structure into a table structure, but this would make our project even more complex,
so we decided to only have a database that contained one table, which we used to store all the
data relevant to the boards. And we only inserted the training data into our database, which

will try to use, to gain knowledge for testing our functions.

We created the following table

Missing

figure

As we see we create a table with 4 variables, and a problem we had at first is that our PRI-
MARY KEY was a text variable(we used the FEN from subsection 3.1.1 as ID), we knew
that if we used a text instead of a string the indexing would be slower, and since inserting the
data to the database was so slow, we thought that at the end we would not be able to use the

database, because querying would take too long.

Thus we tried to convert our data to an int, because this would also allow us to use a faster
index, because SQLITE treats integers primary keys as clustered indexes[18], and they are
not implemented in SQLITE, then we would gain potentially more speed while querying. To
convert the text to integers we used the hashing functions in python’s hashlib, which allowed
to convert, and compress our string while avoiding collisions. However this didn’t affect much
the performance of the database, the fact that we had our database file in our HDD made a

much bigger impact, than the ID not being an integer.
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Sql Triggers.

To insert new data to the database, we had to have a way to check if the ID we were inserting
was be new, and if it was not new we should add the fields of the existing register to the new
one. To do this efficiently was in our best interests, because if we didn’t it would potentially

be exponentially more time consuming.

To do this, we added an sql trigger in our database, which Sqlite accepts, even if it is a simplified
sql engine. An sql trigger is a database object that is attached to a table, and for practical

purposes is similar to a stored procedure.

A trigger is only fired when a clause of INSERT, UPDATE or DELETE occurs, then we have
to specify what to do when the trigger is activated. We then created a trigger, shown in figure
5.1, that everytime it found that a query was trying to insert an existing ID, we would instead

update the table by adding the new values for white, draw, black.

create table BOARD(ID text PRIMARY KEY, white INT, black INT, DRAW INT);
CREATE TRIGGER t2 BEFORE INSERT ON BOARD WHEN NEW.ID IN (SELECT ID FROM BOARD) BEGIN

UPDATE BOARD SET black=COALESCE(NEW.black, 0)+

COALESCE((SELECT black FROM BOARD WHERE ID=NEW.ID), 0) WHERE ID=NEW.ID;
UPDATE BOARD SET white=COALESCE(NEW.white, 0)+

COALESCE( (SELECT white FROM BOARD WHERE ID=NEW.ID), 0) WHERE ID=NEW.ID;
UPDATE BOARD SET draw=COALESCE(NEW.draw, 0)+

COALESCE((SELECT draw FROM BOARD WHERE ID=NEW.ID), O) WHERE ID=NEW.ID;

SELECT RAISE(IGNORE); -- Ignore INSERT
END;

Code Listing 5.1: CreateTable.sql

This small script enabled us to finally merge all the data about the board positions we had,
and to do this, our little script took about 50 hours of processing for the sheer amount of data,
and maybe because we used a text as PRIMARY KEY, as stated in section 5.3.2, an integer

would have make this process faster.

With this we were able to accurately and simply consolidate the board steps, into a single

database, at the end our database occupies, around 2.48 gigabytes of memory space. However
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if we would have done this without triggers, we probably would have needed to query the
database to ask for every movement in every game, we would query the database if it existed,
if it did we would create an update query, and if it didn’t we would just insert the data. This

change would have make this task several orders of magnitude more time consume than it was.

At the end we had recorded the whole dataset of two million games, see figure 5.2, and we had
more than 13 million board positions registered, with this we were able to query for positions
and see if we had any probabilities, we suspect this will probably be more useful in the higher
end of the grid, not in the lower end, because experienced players tend to use some known

moves, particularly in the early stages of the game.

sqlite> select * from boards where ID="END” ;
END|596285[551520|457222

sqlite> select count(x) from boards;
13890970

Code Listing 5.2: Queries to our db.

After a few tests, we moved the database, from our local HDD, to our local SSD, which greatly
reduced querying time. We were generating around 35000 queries to our database, to process
a file in the grid, and using the SSD, by the time it had finished the HDD had only processed
around 1000, we then realized that if we had processed the database in our local SSD instead

of our HDD, we would have saved quite a bit of time.

5.3.3 Querying the database.

The purpose of having the database is that we would use the data we had about certain board
positions, to try to predict the result at the 20th movement, remembering that most games
lasted only 40 movements [16] and this was also the case for our dataset as well, as we discussed

in section 4.2.

At first we started testing the database, we were querying what was the 20th movement in our

dataset to see if we had some board position on our dataset, but for most of the cases (96%),
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we didn’t have anything, so we decided to try to expand this concept to the last 5 movements,

and then sum anything we had found, but still we ended up with around 60% of missing data.

Since we were interested in knowing if having a historical record of our board would help us
predict results in the testing dataset, we devised a way to make use of our database. We started
by saving the historical record of the last movement of each game, in a file that we would then
use to build our models, however, if we remember from Shanon [16], there are more than 103,
possible board positions. This would make it impossible to find any matches, but since we’re
not using the last movements, we think we had something of a chance to actually find some

matches.

We made our very simple query.

SELECT white, draw, black FROM BOARDS WHERE ID="rubgkbnr /ppppp.pp/ ... .. p../ ...
..... /oo ../ ... ... ../ PPPPPPPP/RNBQK”

Code Listing 5.3: ID selection.

But since we didn’t find many matches we had to come up with another strategy.

Final query

Since our original plan, was to use the last movements of the match we were analysing, and
their probability, we needed to come up with a solution to show the tendency in the game, we
would like to know the historical results of the last movements in the current game compared
to our database. If any movement existed we added to the other latest moves, and with this

we would construct a set of chances that other games have taken in the past.

We think this would be specially useful the grand master level, as we saw in 4.1 here we are
likely to find the same kind of players, and thus the same kind of moves and openings, such as
the Sicilian defense, and the Catalan opening, we think that because of this it is likely that we

find some of this movesets, or their variations in our dataset.
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To try to expand on our move probability we decided to make the query a little bit more
complex, we would look further into the game to try to come up with, a board position that
exists in our dataset(and hopefully one that has many entries), we made the query look for
the last 7 moves, to try to find data in our small database, and to make sure we don’t add the
first move in our probabilities we deleted it, otherwise it would have the 2 million games we

recorded, and would nullify any data we find in the rest of the moves.

In sql we used the IN statement which allowed us to query for several IDs at the same time:

SELECT white, draw, black FROM BOARDS WHERE ID IN (idl, id2, id3 ...)

Code Listing 5.4: Multiple ID selection.

Doing this would affect the performance of the script, it would make it considerably slower to
process, compared to the first version of our query, because we would be making many more
request to our database per game. However thankfully we had the database, in our SSD disk,

this simple fact probably saved us hours of waiting for the machine to handle all the queries.

Now that we were done with this problem we would continue to the next phase of our data
consolidation. Even thought we couldn’t use the Movements class 5.2 as we had hoped for at
first, we still were able to take advantage of the infrastructure we build to make it work using

the database approach, which in the end was successful.

Since we were concerned about how likely is that any of the seven last movements of a game
was in our database, we created a table B.1 that showed missing data, meaning that we didn’t
find any information about any of the last movements, or about the white and black player.
An extract of this table is in table 5.1, notice that this table is showing us somewhat the same
trend that we saw in the Network Analysis chapter, it seems that the last games, even thought
they are closer Elo-wise, we might be able to better predict them because of our other importan

historical data.
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number board white black
0 0.918662 0.015444  0.00669241

1 0.887497 0.0100237  0.00619889

27 0.675664 0.000146692  0.00440076

28 0.654855 0.000150784  0.00361882

29  0.693585 0  0.00898979
97 0.471272 0 0.000484183
98  0.48156 0.000491723 0
99 0.455161 0.000165153 0

Table 5.1: Data consolidation missing values (short)

5.4 Consolidating Competitors.

As we saw in section 4.3, we realized that we might be able to use the competitors results

history, to try to predict some of the matches, specially in the later grid elements.

We used the Competitors class, to create a sort of database, that contained info relevant to us
about the competitors. We saved their results for all the data in the training dataset, that we
then used to obtain the number of games, won, drawn and lost for every competitor we saw in

our database.

To process the competitors we chose to store the data of the competitors in a json file, we called
this file, the Competitors database. To load the data from this database and make use of it,
we re-used the Competitors class, we talked about in section 3.3.3 adding a constructor and a

few methods we were able to use the class to serve as a query connection.

The init_prob_results constructor to initialize the database, shown in 3.1,it initialized the
Competitor’s name, number of wins, number of draws, and number of losses, at first we were
using percentages, but we changed the implementation to have only counters, as it would be

easy to have percentages if needed later in the prediction phase.

Then we used a COMPETITORS global variable, which was a dictionary that paired the names of
competitors with the Competitor object of the corresponding player, we also added a method
get_tuple results, to get a tuple of with the white, draw, black, historical results for the

competitor.
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Loading the dataset was not a big problem because we only had 96788 competitors, with the

players with the most games registered, were almost three thousand games, with the majority

of the competitors had very few registered games.

5.5 Final Dataset.

As seen in the previous chapter, we consolidated a final dataset, using everything we had

processed thus far. We then used all the data to predict the matches after twenty complete

moves(when both players have moved), to process this, we cut short our database to eliminate

both half moves, and also we reduced the number of movements to twenty when possible. For

matches that had shorter games, we left the whole game there.

1 2 3
0 -10

0 0 2080
0 0 1979

The header of the data is

4

1972
1875

5
1907
1917
1893

6 7 8
Pustel J 0 1917
Gravett A 0 2029
Muler Wo 1 1930

9 10
Franke R 0
Kruif K 6350
Kell Al 0

11

4577

Code Listing 5.5: Text data sample.

as follows in the same order:

12

1585

1. fen_eval: The evaluation of the board, as we saw in section 3.2.1.

2. sum_eval: The sum of all the evaluations in the game so far.

3. white_elo: The registered ELO for the White player.

4. black_elo: The registered ELO for the Black player.

5. black_avg_elo: Average ELO of the Black player.

6. black: Black player’s name.

7. result: Result of the game.

17

13
26



52

Chapter 5. Data Consolidation

10.

11.

12.

13.

14.

15.

16.

17.

18.

white_avg_elo: Average ELO of the White player.
white: White player’s name.

fen_white: As explained in section 5.3.3, the number of White player’s victory result for

the last 7 boards of this game.

fen_draw: Number of draws in the last 7 boards of this game.

fen_black: Number of Black player’s victories, for the last 7 recorded board positions.
white_win: Number of victories of white player as explained in section 5.4.
white_draw: Number of draws for the White player.

white_lose: Number of loses for the White player.

black _win: Number of victories of Black player.

black _draw: Number of draws of Black player.

black_lose: Number of loses of Black player

Now that we have this dataset that reflectes all the properties we found to be useful, and that

we described in the previous sections, we think that this would be enough to predict with a

somewhat low error rate the result of a chess match after a few movements. In the next chapter

we will process this data, to do this we switched to R, as we have been doing through the

project to generate some plots and make other analysis. Because now the data was not that

overwhelming we could do the analysis in R, as we had hoped to do.
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Analysis

During this chapter we will analyze the dataset we generated, in the last chapter and we
explained in section 5.5, we will discuss the results the theory behind the methods to obtain

these results.

We should note that two models are built, one in which we predict if the result of a match was
white, draw or black. The other model we built to determine who of white or black won. Then
we will compare the two results and discuss if having one less option would be relevant to the
game, part of the logic behind this is that, within a tournament a draw gives both players 1/2

a score, as we noted in section 2.2.2.

6.1 R

Since it’s creation R [15] has been built to be statistics friendly, and since we already have
experience with the analysis, and prediction of R, as well as practical programming skills to
do other operations. We decided to continue the project using R, which is a much lean testing
environment for statistical analysis than Python is, and it’s specially good when we are not
handling enormous datasets. Of course there are packages in Python such as SciKitLearn,
Anaconda, numpy, and jupyter that works kinda like R/Rstudio, but we would have to learn

to use it’s functions and overall gain experience in using these libraries.

23
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Since our effort to produce a lean and somewhat small dataset was successful, and we had
reduced the dataset size significantly 1.1, we will be doing all this analysis in R, as well as some

variable definitions from the data we had created in chapter 5

6.1.1 Multiprocessing with R

As mentioned in section 4.2 multiprocessing is very useful to multicore systems, and since
we had more than a hundred files to process, keep in mind that the processing will be done

independently, we could easily and efficiently take advantage of the multicore processor.

6.1.2 Lapply

Lapply is a very important function in R, it’s a very efficient way to execute functions in R. It
is used to apply a function over a List or Vector, it returns a list with the result in the same

order of the original input object, and it also returns it in the same container.
To use lapply we need to look at it’s formula first: lapply(X, FUN, ...)
As we can see x represents the input object and FUN, which is the function to be executed.

Most of the time faster to execute a function over a matrix in R than to use what a computer
scientis would find more obvious, using a for statement, so this is a key thing to learn in R.

We encourage the reader to use r's vignette("lapply") to read more on this subject.

6.1.3 The parallel library

We have said already that the multiprocessing package in python, specially its pool.map()
function is very similar to the apply function in R. After looking into continue to take advantage

of our multicore processor we looked into how to use the parallelization in R.

Thus we found the parallel library, which is part of the R core package [15], to do parallelization

we used the parLapply function.
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It’s usage is very simple, and it’s not very different to the previously explained lapply function,

however it has it’s particularities.

To use it we need a to create a cluster that will later be used to do the task, as in python’s
multiprocessing library, this will create a pool of workers which will actually be doing the job.
In this case we used the maximum number of cores minus one because, on the first test we were
unable to comfortably use our computer, so we reduced the number of cores minus one, which

in our case would be 3.

Next we would start our cluster, with the desired numberof workers, we added the fork option
because it would allow us to use our main environment in the multicore environment, without
this we would not be able to access methods that we declared, and were executing inside our
function, this Fork option is only available to UNIX systems, however there’s an option for

windows.

# Get the number of cores

ncores <— detectCores() — 1

# start cluster

cluster <— makeCluster (ncores ,type="FORK")

5| parLapply (cluster , X ,FUN...)

Code Listing 6.1: parLapply example.

Then we would use the function as shown in code snippet 6.1, with the added requirement of

the cluster we would be using.

With this we were able to accelerate the processing of all our elements in our grid which were
somewhat computive intensive, but looking back the methods would execute much more faster

than most of the things we did before.

6.2 Derived data

Before moving into what we used to model our problem we combined our data to create a

few features, with the idea that this combination would reflect more the relationships of the
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variables.

e Delta Avg ELO: The difference of white and black average ELO.

e Percentage results: We added a few new columns that represent the percentage of

results for, fen, white and black.

e Delta percentage: For these variables in the case of the model which has no draws, we

also added the difference of win/lose draw.

WE also created the following variables for the model in which we are predicting only wins or

losses.

e Delta White: The difference between wins and losses for white player.
e Delta Black: Same as before, but for black.

e Delta FEN: Same, but for the board results.

With this we are hoping to capture the relationship these variables have between each other,

and thus make them better predictors for the game.

6.3 Modeling the problem.

6.3.1 Kernels

Kernel methods are an effective alternative to feature extraction. A kernel function is a function

returning the inner product between the mapped data points in a higher dimensional space.

The kernel function is given by the relation:

k(z,2") = ¢(x)"o(') (6.1)
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The kernel function is typically symmetric(k(x,z’) = k(2’, x)) and non-negative(k(x,z’) > 0).

This means that only functions that can be transformed in such a way that the inner product
is 272’ can be replaced by "kernelized”. The learning then takes place in the feature space,
provided the learning algorithm can be entirely rewritten so that the data points only appear
inside dot products with other data points. The fact that Kernel methods do not depend on
the dimensionality of the feature space, and that they can use any kernel function makes them

a good candidate for different classification tasks.

6.3.2 RBF kernel

One of the most well known functions is the RBF kernel, also known as the Gaussian kernel,

the radial basis function kernel is defined as:

[l — 2|

= ) (6.2)

This is an example of a radial basis function because each basis functions depends only on the
radial distance from a center, which in this case is the ||z — 2/||. We see in definition 6.2 the

o2 is known as the bandwidth.

6.3.3 Support vector machines.

To apply the rbf kernel we need a sparse kernel machine, for this we will use a support vector
machine. The SVM’s are supervised methods that use the a learning algorithm that can be
used for both classification and regression problems, the SVM will build a model that will assign

new data into one category or another.

Consider the following function:

J(w,o) =>"i=1"L(y;, 4;) + o||w|]?, Where: §; = w”z; +wy (6.3)
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If L quadratic loss, then this function is equivalent to ridge regression, and we know that this

function can be kernelized, and thus it has a solution in the form of w = (X7 X + o)1 X1y.

However, if we replace the quadratic/ log-loss with some other loss function, to be explained
below, we can ensure that the solution is sparse, so that predictions only depend on a subset
of the training data, known as support vectors. This combination of the kernel trick plus
a modified loss function is known as a support vector machine or SVM. This technique was

originally designed for binary classification but can be extended to regression and classification.

6.3.4 Random Forest

Random forests are an ensemble classification method. The method produces a classification
tree at each iteration. This Classification tree is built from a random subset of the data, and
at each node in the tree a random subset of predictor variables are selected. Multiple trees
are constructed in this fashion until at test time the classification of this individual trees are
combined to form a final prediction. By constructing many trees and averaging many estimates
we are able to reduce variance. This is why were interested in the Random Forest, because
this property helps us reduce bias. We train M different trees on different subsets of the data,

chosen randomly with replacement, and the compute the: ensemble

ORI AAC (6:4)

where f,, is the mth tree. This technique is called bagging[4], which stands for bootstrap
aggregating. However, if we simply re-run the same learning algorithm on different subsets of
data, it can result in highly correlated predictors, which limits the amount of variance reduction
that is possible. Which is why at each node in the tree a random subset of predictor variables

are selected. This is what ultimately differentiates bagging from Random Forests.

We then vary the tree parameter of the random forest to try to find the best parameter for our

given K, as we did before for SVN, then comparing the OOB(out of bag) error we choose the
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best ntree value.

ntrees = (110,200, 3981)

6.4 Building our model.

As discussed before, our challenge is to try to predict the results of the games after 20 move-
ments, after going through a lot steps to finally reduce our dataset to a more easily computable
level, while ridding ourselves from data that we didn’t need, we think we have done a good job

to get the most important data out of the 2 gigabyte original file.

Now we are going to try to produce a couple of results, one in which we have draws, and one
that doesn’t, this is because we are sure to increase precision and at the same time a draw

affects less the overall match result than other result.

To accelerate the execution of the dataset, which remember that as we saw in Section 4.2.1 for
each of the grid elements, we have around 14000 training games, and 7000 test games for each
of the grid elements(see A.2). Because of this we used the parallel library in R, to accelerate a

little bit the calculations because we had many operations to do.

6.4.1 SVM with RBF kernel

Our first model consists of a SVM, with a RBF kernel, to tune this we needed to pay attention
to two parameter, one for each of these functions, the C' parameter which is the complexity
parameter, which represents the trade off between the training error and margin width. We

also have to calibrate the bandwidth parameter (o) of the RBF kernel function.

To tune o we are using kernlab’s [11] sigest (automatic sigma estimation) in the ksvm() function.
In the case of the C' parameter we are going to generate a small list of option to calculate a
model with a different C' each time. We also are using 3-fold cross validation because, as we

stated before we have too much data to use the standard ten-fold cross validation.
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get_best_model <— function (trainL ,c){

err = 0
model = list ()
modelList = list ()
for (i in 1l:length(c)){
print (i) # print the number of
model <— ksvm (y=trainL$y ,x=trainL$x ,C=c[i], cross=3)
modelList <— list (modelList, list (model))
err [i]<—cross (model)

}
n = which.min(err)
model = unlist (modelList) [n]

return (model [[1]])

Code Listing 6.2: R function to tune ksvm parameters.

As we saw in section 6.3.1, kernels are memory based methods, that use their own data to better

fit our model, and this is why we need to tune the parameters to obtain a better prediction.

In code snippet6.2 we are creating a series of models each with a different C, each model created

we add it to a list, so that we don’t have to create the model from zero. Then we select the

model with the lowest training error, and use this model then to predict our results.

This is an example of a model function 6.2 would return.

Support Vector Machine object of class "ksvm"

SV type: C-svc (classification)

parameter : cost C = 0.01

Gaussian Radial Basis kernel function.

Hyperparameter : sigma = 0.419494047330239

Number of Support Vectors : 174

Objective Function Value : -1.3194

Training error : 0.159036
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get_best_rf_model <— function (trainL , trees)({
tab = table(trainL$y)
num = round (tab [which.min(tab)]x.3)
re = length(table (trainL$y))
samp = rep(num,re) # we will have the same number of
names (samp) = c(”—17,71")
modelList = list ()
model = NULL
err3=0
for (i in 1l:length(trees)){
print (i)
rf <— randomForest (y=trainL$y , x=trainL$x, ntree=trees[i], proximity=
FALSE, strata=trainL$y , sampsize = samp)
modelList <— c¢(modelList ,list (rf))
err3 [i]<— rf$err.rate[trees[i],1]

}
n = which.min(err3)
model = modelList [n]

return (model [[1]])

Code Listing 6.3: R function to random forest parameters.

Cross validation error : 0.158986

We see that the parameters we just talked about are present in this summary. This model

returned a C' of 0.01, and the o parameter was set to 0.41.

6.4.2 Random forest model.

For our random forest models, we were using a tuning variable that we later used to compare
ODB error, and then select the best model we found to then predict the results of the test

dataset.

If we take a closer look into what our code snippet 6.3, we see that we are selecting the model
with the lowest out of bag(OOB) error, and then returning this method. Also we are using
the sampsize parameter, to potentially reduce the number of operations, by reducing the data

sample.

Random forests have the property of being able to use down sampling without losing data,

since this is a tree ensemble method. A large number of bootstrap data is taken from the
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training sample, and a separate unpruned tree is created for each dataset, and at each step of
the creation of each split of the tree, which selects randomly a subset of predictors to promote
diversity. When predicting a prediction is made by every tree which is then added up to produce

a prediction for the sample.

Before going ahead of this we tested that this was the case with one of our grid elements, we
made the prediction of win/loss for a dataset with the whole data and one with the sampled

dataset. Then we compared the ROC of both models, as figure 6.1.

Sampled vs full ROC of a random forest

1.0

—— Sampled
— Full

0.8

Sensitivity
0.6

0.4

0.0
|

| | | | | T
1.0 0.8 0.6 0.4 0.2 0.0

Specificity

Figure 6.1: Random forest ROC comparison.

For both of these files we got an area under the curve of 0.5945 for the sampled model, and
0.5912 for the model which used all the data. We then were sure to continue using the reduced

dataset, and we used for both types of models our code shown in code snippet 6.3.
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6.5 Results

With the effort we put on gathering our dataset, we were able to train a reasonably good
model, at least with SVMs, which, in turn helped us produce reasonably good results, even
if as a result of having to devote ourselves more into building the dataset than creating our
model. Our results are shown complete in appendix C, for both our models including draws

C.2, and ignoring draws C.1.

We would expect the results with the highest difference in ELO to actually show the better
prediction capabilities, since the best error are either on the extremes of the grid, if we remember
Figure 4.2, our grid positions were determined by the average ELO. This means that at the
beginning and at the end of the white range, are the highest differences in ELO, whether it’s
in favor of the white player for the first black player range, or in favor of the black in the last
of the black ranges for a given white range. In graphical terms, the lower part of the graph will

favor white, and the higher will favor the black player.

Overall our results of the SVM are better than the random forest, and even the results of the
random forest, and even that is not terribly bad. We think that this difference in performance
is by design in their algorithms, we can see this clearly if we look at the first 3 columns of both
table 6.1 and table 6.2, we see that the SVM was selecting completely one of the variables or
the other. And as discussed in section 6.4.2, this is due to the fact that the Random forest in
each tree iteration it has a probability to select one of of the predictors, to improve it’s diversity,

and this we think is the reason why it didn’t go all the time for one answer or the other.

On the other hand our predictions for the model that includes draw was pretty good, we think
that this is because there is one more possible answer, and thus if we are already distributing
the predictions into a new factor to predict, we might going to be better, this is mostly due
to the fact that in the dataset, most of the chance to win are very skewed one way or the
other, depending on the grid position due to the fact that there are times where there is a big

difference in ELO averages.
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error Black White | error Black Draw White

9] 0.13 0.00 1.00 | 0.31 0.08 0.84 0.93
29 | 0.16  0.00 1.00 | 0.38 0.15 0.69 0.89
30 0.09 0.00 1.00 | 0.30 0.10 0.81 0.87
31| 0.11 1.00 0.00 | 0.29 092 0.84 0.09
57| 043 0.15 0.79 | 0.50 085 0.10 0.87
72| 0.11 1.00 0.00| 0.34 089 0.83 0.10
741 019 1.00 0.00 | 047 089 042 0.42
84 | 0.18 1.00 0.00| 046 090 045 0.37

avg | 0.263 0.43

Table 6.1: Results of the SVM prediction for selected grid

error Black White | error Black Draw White
25 0.44  0.04 0.89 | 0.56 047 0.65 0.55
171 0.25  0.02 093] 049 0.34 0.52 0.89
48 | 0.29  0.02 0.89 | 0.64 0.66 0.36 0.70
49 | 0.21 0.02 0.89 | 0.51 0.53 0.35 0.84
751 0.62  0.09 0.80 | 048 0.86 0.43 0.40
8| 0.64 0.13 0.79 | 0.50 0.86 0.33 0.56
88 | 0.51 0.12 0.79 | 043 0.82 0.15 0.80
99 | 049  0.09 0.76 | 0.46 0.69 0.28 0.65

avg | 0.491 0.48

Table 6.2: Results of the Random forest prediction for selected grid

If what we think about, that grid position affect the result, if we plot our data in sequence

of 10, each of them representing a grid range for the white player and the X axis, represents

the grid of the black range for each white range, we will see more or less an arc at least in the

middle of the ranges, from grid number 30 to 60, or maybe a wider range.

As we can see, this is indeed the case for most of our models. In the case of the draw less

SVM model, we get very good results, however this is due to the fact that, after eliminating the

draws from our possible results we have around 80% of results going to one side or the other.
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Figure 6.3: SVM model results with draw.
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Error for every White grid range without draws
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Figure 6.4: Drawless Results of the random forest model.

For the model of the random forest with draw less result, we tried quite a bit of different things,
and we couldn’t improve the results, we increased the number of trees, changed the variables,
etc but we got similar results. More interesting is the reason of why is the plot having a slope,
for most if not all of the variables, we double checked if we had done something bad while
plotting and we found nothing. This we think is related to the fact that as we approach the
upper part of a white range, the black average ELO gets better, and then, the pairings are not

that skewed in one player’s favor.
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Figure 6.5: Random forest model results with draw.
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6.6 Summary of Thesis Achievements

To be able to extract knowledge from a big data file, we needed to cover many steps, starting
from a foreign database that we downloaded from the Internet, we were able to decode it, and
start manipulating it. Then we started to create the process that would be able to perform
operations in the database. As in the data warehousing process, we then started filtering unde-
sired data, aggregating data to create more knowledge and refined data that was inconsistent
from the database. We then divided the database into a grid that we would later operate, and
each of these grid elements got divided into a train/test suite. We then were confronted into
how best to manage a file so big, but we needed to be able to store all of the movements of
the board as well as some historical record on how was the result every a match after it went
through such a board position. We then decided that we needed to have a traditional database,
that even thought was not it was terrible complex, it served well it’s purpose and allowed us
to generate a complete database with all the movements in the training set of our grid, all 1.5
million games that contained more than 13 million different board positions(meaning the pieces

position on the board).

We also created a second database with the historical record of the competitors that were in
our database, this was much less of a problem because there were no more than 100 thousand

players.

Having three sources to condense in our data was what we think helped us at the time of
predicting the outcome of matches, at the end we used one of the most well known and used
methods in machine learning, that we know would generalize quite well, specially the kernel

SVM, in our case.

This is specially interesting if we contrast this with what Vence did in our previous work where a
special function to perform then logistic and linear regression, in our case we mostly focused on
processing the big database and then consolidating our final dataset to perform our predictions
over the test dataset. The SVM specially performed better than using the method that Vence

proposed, and we were able to predict the games we kept from our initial purge.
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As future work we think it might be of interest to continue testing which variables we could select
and create from our dataset, we might have missed something that might be of interest. We
think that if there was some implementation that differentiated grid elements zero and ninety
nine, using different models for such disparaging dataset would probably make a noticeable
improvement. Also we think that the results could be improved using ensemble methods or a

neural network, which we didn’t implement for time constraints.

At the end of the project we were satisfied with our results, because we went through all the
process of big data mining, and we used a generalizing function to predict the results of chess

matches after 20 movements.
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Grid Creation

Al

Games statistics

# %W %B %Draw pu  median
0 0.60 0.21 0.18 39.64 38
1 046 0.30 0.23 40.28 38
2 036 0.36 0.26 40.48 39
3 028 043 0.27 40.82 39
4 0.25 047 0.27 40.68 39
5 0.20 0.52 0.26 40.75 39
6 0.16 0.57 0.25 40.88 39
7 0.14 0.62 0.23 40.60 39
0.10 0.70 0.19 40.81 39
0.04 0.83 0.11 39.16 37
10 0.69 0.11 0.19 39.62 38
11 054 0.18 0.27 40.97 39
12 042 0.25 0.31 40.82 39
13 033 0.33 0.33 40.93 40
14 0.27 0.39 0.33 41.13 40
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15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

0.22
0.18
0.14
0.09
0.05
0.70
0.57
0.46
0.37
0.30
0.25
0.19
0.15
0.11
0.06
0.73
0.59
0.48
0.40
0.33
0.26
0.21
0.18
0.13
0.08
0.76
0.61
0.51
0.42

0.45
0.51
0.58
0.68
0.80
0.10
0.15
0.21
0.27
0.34
0.38
0.46
0.52
0.61
0.73
0.08
0.14
0.20
0.24
0.29
0.33
0.39
0.46
0.54
0.66
0.07
0.12
0.16
0.20

0.32
0.29
0.27
0.22
0.14
0.19
0.26
0.31
0.34
0.35
0.35
0.34
0.31
0.27
0.20
0.17
0.26
0.31
0.35
0.37
0.39
0.38
0.35
0.31
0.25
0.16
0.26
0.32
0.37

41.54
41.75
42.16
42.04
40.50
39.61
40.70
41.11
40.92
41.31
41.70
41.90
42.08
42.25
41.72
39.77
41.35
41.48
41.32
41.16
40.86
41.31
41.69
42.35
42.45
40.12
41.47
41.43
41.08

40
40
40
40
38
37
39
40
40
40
40
40
41
40
40
38
40
40
40
40
40
40
40
41
41
38
40
40
40
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73

44
45
46
47
48
49
20
o1
02
53
o4
95
26
57
58
29
60
61
62
63
64
65
66
67
68
69
70
71
72

0.35
0.28
0.23
0.18
0.13
0.09
0.78
0.63
0.54
0.45
0.36
0.30
0.24
0.19
0.15
0.10
0.80
0.66
0.57
0.47
0.38
0.31
0.25
0.21
0.16
0.12
0.83
0.69
0.58

0.23
0.28
0.33
0.40
0.48
0.59
0.05
0.10
0.14
0.17
0.20
0.24
0.28
0.34
0.40
0.52
0.05
0.09
0.12
0.14
0.17
0.20
0.23
0.29
0.33
0.43
0.04
0.07
0.10

0.40
0.42
0.43
0.41
0.37
0.31
0.15
0.25
0.31
0.37
0.42
0.44
0.46
0.46
0.43
0.36
0.14
0.24
0.30
0.37
0.44
0.48
0.50
0.49
0.50
0.44
0.12
0.23
0.30

40.52
40.50
40.50
40.88
41.48
42.60
39.87
41.69
41.62
40.98
40.48
39.74
39.73
39.86
40.94
42.40
39.88
41.50
41.95
41.24
40.51
39.50
38.59
39.39
39.79
41.65
39.64
41.85
41.86

40
40
40
40
40
41
38
40
40
40
40
39
39
39
40
41
38
40
40
40
39
39
38
39
39
40
37
40
40
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73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

0.50
0.41
0.33
0.28
0.22
0.18
0.14
0.84
0.70
0.60
0.52
0.43
0.36
0.31
0.25
0.20
0.17
0.83
0.69
0.57
0.49
0.42
0.36
0.31
0.29
0.26
0.23

0.12
0.14
0.16
0.19
0.22
0.27
0.35
0.03
0.06
0.09
0.10
0.12
0.13
0.16
0.17
0.21
0.29
0.03
0.06
0.08
0.09
0.11
0.12
0.13
0.15
0.18
0.23

0.37
0.43
0.49
0.52
0.54
0.54
0.50
0.11
0.22
0.30
0.36
0.43
0.49
0.52
0.56
0.57
0.53
0.12
0.24
0.33
0.40
0.45
0.50
0.54
0.54
0.54
0.53

41.64
40.79
39.73
38.73
38.41
38.64
40.78
39.05
42.21
42.19
41.69
41.21
40.13
39.44
38.66
38.58
41.02
39.87
43.05
43.07
42.67
41.94
41.78
41.16
41.81
42.38
43.23

40
40
39
38
38
38
40
37
40
40
40
40
39
39
38
37
40
38
41
41
41
41
40
40
41
41
41

Table A.1: Grid Basic Statistics
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A.2 Grid definition

White Black White Black
# Games Min Max Min Max | # Games Min Max Min Max
1 20590 780 2043 700 1709 | 51 20671 2348 2397 1078 2153
2 20678 908 2043 1710 1836 | 52 20804 2348 2397 2154 2229
3 20634 1012 2043 1837 1930 | 53 20710 2348 2397 2230 2279
4 20365 700 2043 1931 2005 | 54 20315 2348 2397 2280 2323
5 20657 1079 2043 2006 2065 | 55 20670 2348 2397 2324 2364
6 20703 100 2043 2066 2120 | 56 20582 2348 2397 2365 2402
720499 215 2043 2121 2173 | 57 20983 2348 2397 2403 2442
8 20450 100 2043 2174 2237 | 58 20397 2348 2397 2443 2481
9 20432 100 2043 2238 2329 | 59 20443 2348 2397 2482 2529
10 20495 1114 2043 2330 2851 | 60 20577 2348 2397 2530 2820
11 20427 2044 2160 215 1922 | 61 20911 2398 2448 1146 2189
12 20585 2044 2160 1923 2026 | 62 20854 2398 2448 2190 2262
13 20306 2044 2160 2027 2097 | 63 20898 2398 2448 2263 2314
14 20284 2044 2160 2098 2156 | 64 21277 2398 2448 2315 2359
15 20489 2044 2160 2157 2205 | 65 20460 2398 2448 2360 2396
16 20412 2044 2160 2206 2249 | 66 20474 2398 2448 2397 2433
17 20486 2044 2160 2250 2292 | 67 21220 2398 2448 2434 2468
18 20568 2044 2160 2293 2347 | 68 20835 2398 2448 2469 2504
19 20076 2044 2160 2348 2421 | 69 20682 2398 2448 2505 2548
20 20313 2044 2160 2422 2851 | 70 20511 2398 2448 2549 2820
21 20428 2161 2235 215 2013 | 71 20351 2449 2498 1351 2221
22 20505 2161 2235 2014 2096 | 72 20255 2449 2498 2222 2295
23 20388 2161 2235 2097 2162 | 73 20237 2449 2498 2296 2348
24 20422 2161 2235 2163 2216 | 74 20283 2449 2498 2349 2389
25 20755 2161 2235 2217 2260 | 75 20174 2449 2498 2390 2426
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26 20245 2161 2235 2261 2301 | 76 20383 2449 2498 2427 2459
27 20497 2161 2235 2302 2346 | 77 19817 2449 2498 2460 2491
28 20332 2161 2235 2347 2394 | 78 19981 2449 2498 2492 2525
29 20260 2161 2235 2395 2458 | 79 20123 2449 2498 2526 2566
30 20383 2161 2235 2459 2820 | 80 20137 2449 2498 2567 2820

31 20896 2236 2293 1114 2070 | 81 20472 2499 2558 1259 2259
32 20627 2236 2293 2071 2151 | 82 20131 2499 2558 2260 2339
33 21054 2236 2293 2152 2212 | 83 20408 2499 2558 2340 2388
34 20549 2236 2293 2213 2256 | 84 20474 2499 2558 2389 2428
35 20806 2236 2293 2257 2296 | 85 20549 2499 2558 2429 2462
36 20929 2236 2293 2297 2338 | 86 19729 2499 2558 2463 2492
37 20585 2236 2293 2339 2378 | 87 20423 2499 2558 2493 2523
38 20865 2236 2293 2379 2425 | 88 20094 2499 2558 2524 2555
39 20696 2236 2293 2426 2482 | 89 21108 2499 2558 2556 2595
40 20541 2236 2293 2483 2820 | 90 19315 2499 2558 2596 2820

41 20149 2294 2347 1118 2114 | 91 20346 2559 2875 1400 2333
42 20018 2294 2347 2115 2193 | 92 20430 2559 2820 2334 2416
43 20217 2294 2347 2194 2246 | 93 20124 2559 2820 2417 2466
44 20041 2294 2347 2247 2288 | 94 20170 2559 2820 2467 2505
45 20171 2294 2347 2289 2330 | 95 20294 2559 2820 2506 2537
46 19504 2294 2347 2331 2369 | 96 20265 2559 2820 2538 2566
47 20283 2294 2347 2370 2410 | 97 20694 2559 2820 2567 2595
48 19812 2294 2347 2411 2453 | 98 19868 2559 2820 2596 2634
49 20120 2294 2347 2454 2506 | 99 20228 2559 2820 2635 2677

50 19829 2294 2347 2507 2820 | 100 20088 2559 2870 2678 2861

Table A.2: Grid Ranges

A.3 Network Summary statistics.
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4 N E  k 5| # N E k 5
0 12060 18274 1.51 0.00025 | 50 13128 16351 1.24 0.00018
1 13371 17884 1.33 0.00020 | 51 9889 16617 1.68 0.00033
2 13504 17308 1.28 0.00018 | 52 8186 16358 1.99 0.00048
3 13395 16755 1.25 0.00018 | 53 6773 15817  2.33 0.00068
4 14252 17300 1.21 0.00017 | 54 4688 16062 3.42 0.00146
5 15658 17093 1.09 0.00013 | 55 3342 15925 4.76 0.00285
6 14941 16557 1.10 0.00014 | 56 4354 16087 3.69 0.00169
7 15498 16857 1.08 0.00014 | 57 3774 15388  4.07 0.00216
8 15230 16825 1.10 0.00014 | 58 3518 15334 4.35 0.00247
0 14387 16103 1.11 0.00015 | 59 3308 15303 4.62 0.00279
10 15623 16817 1.07 0.00013 | 60 12559 16427 1.30 0.00020
11 14432 16982 1.17 0.00016 | 61 8705 16315 1.87 0.00043
12 11817 18035 1.52 0.00025 | 62 6596 15868 2.40 0.00072
13 10857 18070 1.66 0.00030 | 63 5084 16369 3.21 0.00126
14 13928 17818 1.27 0.00018 | 64 3994 15587 3.90 0.00195
15 13655 17282 1.26 0.00018 | 65 2000 15948  7.97 0.00797
16 12832 16871 1.31 0.00020 | 66 2426 15985 6.58 0.00542
17 12210 16296 1.33 0.00021 | 67 2512 15581  6.20 0.00493
18 11322 15446 1.36 0.00024 | 68 2387 15556 6.51 0.00545
19 10646 15335 1.44 0.00027 | 69 2292 15119 6.59 0.00575
20 15456 16843 1.08 0.00014 | 70 11754 16071 1.36 0.00023
21 13876 17243 1.24 0.00017 | 71 7248 15632 2.15 0.00059
22 13001 17675 1.35 0.00020 | 72 4855 15266 3.14 0.00129
23 0416 18342 1.94 0.00041 | 73 3499 15111 4.31 0.00246
24 10807 18179 1.68 0.00031 | 74 2713 15261 5.62 0.00414
25 11073 16961 1.53 0.00027 | 75 1782 15246 8.55 0.00959
26 10397 16682 1.60 0.00030 | 76 1123 14742 13.12 0.02335
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27 9522 15950 1.67 0.00035 | 77 1516 14933  9.85 0.01298
28 8730 15570 1.78 0.00040 | 78 1499 14616 9.75 0.01300
29 8268 15435 1.86 0.00045 | 79 1469 14840 10.10 0.01374
30 15224 17553 1.15 0.00015 | 80 11021 15934 1.44 0.00026
31 12853 17328 1.34 0.00020 | 81 6007 15457  2.57 0.00085
32 12123 18115 1.49 0.00024 | 82 3540 15421 4.35 0.00246
33 8887 17921 2.01 0.00045 | 83 2504 15679  6.26 0.00499
34 6974 17707 2.53 0.00072 | 84 1743 15675 899 0.01031
35 9049 17169 1.89 0.00041 | 85 1392 14840 10.66 0.01530
36 7955 16168 2.03 0.00051 | 86 853 15763 18.47 0.04327
37 T767 16246 2.09 0.00053 | 87 765 14866 19.43 0.05073
38 6847 15753 2.30 0.00067 | 88 985 15558 15.79 0.03203
39 6376 15491 2.42 0.00076 | 89 971 14174 14.59 0.03003
40 13783 16203 1.17 0.00017 | 90 9834 15711 1.59 0.00032
41 10771 15969 1.48 0.00027 | 91 3952 15607  3.94 0.00199
42 10076 16915 1.67 0.00033 | 92 1881 15121  8.03 0.00854
43 8489 16426 1.93 0.00045 |93 1216 15198 12.49 0.02053
44 5102 16382 3.21 0.00125 | 94 867 14995 17.29 0.03985
45 5560 15213 2.73 0.00098 | 95 663 14740 22.23 0.06696
46 6199 15657 2.52 0.00081 | 96 463 14987 32.36 0.13952
47 5426 15159 2.79 0.00102 | 97 464 14640 31.55 0.13570
48 4930 14725 2.98 0.00121 | 98 448 14484 32.33 0.14401
49 4575 14762 3.22 0.00141 | 99 450 14263 31.69 0.14055

Table A.3: Competitors Network Summary
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Database missing data.

number board white black
0 0.918662 0.015444  0.00669241
1 0.887497 0.0100237  0.00619889
10 0.842572 0.0151053  0.00180155
11 0.792979  0.00568891  0.00249757
12 0.748188  0.00452899  0.00258799
13 0.725759  0.00266383  0.00332978
14 0.717105 0.0025  0.00355263
15 0.717791  0.00241319  0.00388792
16 0.712677  0.00152905  0.00569919
17 0.72495 0.000717772  0.00803905
18 0.727585 0.000596748  0.00865284
19 0.73379 0.000152207 0.0199391
2 0.853523  0.00623306  0.00758808
20 0.800746 0.0181014  0.00234904
21 0.738092  0.00728647  0.00161921
22 0.694474  0.00252391  0.00172689
23 0.692198  0.00426246 0.0041333

79
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24
25
26
27
28
29

3
30
31
32
33
34
35
36
37
38
39

4
40
41
42
43
44
45
46
47
48
49

5

0.674242
0.673472
0.668966
0.675664
0.654855
0.693585
0.846438
0.774516
0.719775
0.685393
0.664129
0.654531
0.637922
0.631772
0.641432
0.633643
0.669155
0.826246
0.745584
0.678735
0.643023
0.630131
0.603817
0.581795
0.602568
0.587378
0.602963

0.62198

0.81221

0.00205444
0.000811249
0.00070373
0.000146692
0.000150784
0
0.00410228
0.0164109
0.00439138
0.00361617
0.00157501
0.00107081
0.000274198
0.000146413
0.000141503
0
0.000152323
0.00285287
0.0154938
0.00429307
0.00204611
0.00115224
0.00115674
0.000312793
0

0

0
0.000159974
0.0035432

0.00295326
0.00338021
0.00253343
0.00440076
0.00361882
0.00898979
0.00984548
0.000266845
0.000960615
0.00116234
0.00105001
0.00107081
0.000685495
0.000585652
0.00183954
0.0032434
0.00274181
0.00910202
0.00115841
0.00100172
0.000136407
0.00043209
0.000433777
0.00125117
0.000447895
0.00144161
0.000604778
0.00111982
0.00953938
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50
ol
52
93
54
95
56
o7
o8
59

60
61
62
63
64
65
66
67
68
69

70
71
72
73
4
1)
76

0.732115
0.679061
0.643219
0.613466
0.589584
0.569123
0.555685
0.554172
0.569964
0.614332
0.802249

0.70912
0.657988
0.618719
0.589498

0.56301
0.540066

0.52127

0.51133
0.533015
0.574816

0.79193
0.704489
0.653771
0.599006
0.569157
0.554627
0.523168

0.50552

0.0152996
0.0041001
0.00140687
0.00187428
0.000443853

o o o o O

0.0018508
0.0187293
0.00254705
0.00158387
0.000870322
0.000302206
0.000148943
0

0
0.000149388
0
0.00150974
0.0220751
0.00240855
0.000903478
0.00030003
0.000303905
0

0

0
0.000282765
0.000281373
0.000144175
0.000147951

0
0.000145582
0.000311333
0.000155304
0.000310897

0.0126708
0.000144071
0.000566011

0

0

0
0.000148943

0
0.000298151

0
0.000152999

0.0166072

0

0.000151953
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7
78
79

8
80
81
82
83
84
85
86
87
88
89

9
90
91
92
93
94
95
96
97
98
99

0.486478
0.483994
0.508275
0.800962
0.688541
0.622109
0.592997
0.569238
0.542996
0.505403
0.493476
0.467796
0.457068
0.490222
0.804435
0.666372
0.608153
0.572789
0.536026
0.504221
0.492144
0.487782
0.471272

0.48156
0.455161

0.000153657
0

0
0.000707314
0.0211926
0.00225293
0.000748167
0.000147471

o o o o o O

0.000144009
0.0167696
0.000451264
0.000151172
0

0

0
0.000155642
0
0.000491723
0.000165153

0

0

0

0.0236243
0.000146156
0

0

0.0550115

0
0.000300842
0.000453515
0

0

0

0
0.000484183
0

0

Table B.1: Percentage of Missing data for our final dataset.
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Results

C.1 Gaussian Kernel with three fold crossvalidation.

C.1.1 Without Draws.

SVM Random Forest
Total Black White | Total Black White

0] 021 0.65 0.06 | 0.73  0.02 0.97
1] 028 0.49 0.14 | 058 0.01 0.96
21 032 035 0.30 | 048  0.02 0.96

31 034 0.20 0.55| 039 0.01 0.97
41 031 0.09 0.73 ] 034 0.02 0.95
51 029  0.04 089 0.29 0.01 0.96
6 023 0.00 099 | 023 0.01 0.97
71 0.18  0.00 1.00 | 0.18 0.01 0.96
8| 0.13 0.00 1.00 | 0.13  0.00 0.97
91 0.05 0.00 1.00 | 0.05  0.00 0.96

10| 0.14  1.00 0.00 | 0.82 0.05 0.94
11 025 1.00 0.00 | 0.71  0.06 0.92

83
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12
13
14
15
16
17
18
19
10
21
22
23
24
25
26
27
28
29
20
31
32
33
34
35
36
37
38
39
30

0.37
0.43
0.40
0.32
0.26
0.19
0.12
0.06
0.12
0.21
0.34
0.41
0.43
0.39
0.30
0.22
0.16
0.09
0.11
0.20
0.29
0.40
0.45
0.42
0.36
0.28
0.19
0.11
0.09

0.83
0.39
0.14
0.03
0.00
0.00
0.00
0.00
1.00
1.00
0.97
0.70
0.22
0.09
0.00
0.00
0.00
0.00
1.00
1.00
0.99
0.78
0.60
0.12
0.02
0.00
0.00
0.00
1.00

0.10
0.48
0.75
0.93
1.00
1.00
1.00
1.00
0.00
0.00
0.02
0.20
0.67
0.86
1.00
1.00
1.00
1.00
0.00
0.00
0.01
0.17
0.32
0.80
0.96
1.00
1.00
1.00
0.00

0.59
0.47
0.39
0.31
0.25
0.18
0.12
0.06
0.82
0.71
0.60
0.52
0.44
0.37
0.28
0.21
0.15
0.09
0.81
0.71
0.63
0.57
0.50
0.41
0.34
0.27
0.19
0.11
0.81

0.05
0.04
0.02
0.02
0.02
0.01
0.01
0.00
0.07
0.07
0.07
0.06
0.04
0.03
0.02
0.01
0.01
0.00
0.06
0.07
0.08
0.07
0.06
0.04
0.04
0.02
0.01
0.01
0.08

0.90
0.90
0.91
0.92
0.93
0.92
0.95
0.94
0.92
0.88
0.86
0.86
0.89
0.90
0.89
0.91
0.92
0.93
0.90
0.87
0.86
0.86
0.88
0.87
0.87
0.91
0.93
0.93
0.88
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41
42
43
44
45
46
47
48
49
40
o1
52
23
o4
95
26
57
o8
29
20
61
62
63
64
65
66
67
68
69

0.17
0.24
0.31
0.41
0.45
0.40
0.30
0.22
0.15
0.07
0.15
0.21
0.27
0.37
0.44
0.43
0.36
0.28
0.19
0.06
0.12
0.17
0.25
0.51
0.39
0.45
0.42
0.34
0.23

1.00
1.00
1.00
0.85
0.45
0.04
0.00
0.00
0.00
1.00
1.00
1.00
1.00
1.00
0.74
0.15
0.02
0.00
0.00
1.00
1.00
1.00
1.00
0.33
0.90
0.61
0.00
0.00
0.00

0.00
0.00
0.00
0.11
0.45
0.92
1.00
1.00
1.00
0.00
0.00
0.00
0.00
0.00
0.20
0.79
0.97
1.00
1.00
0.00
0.00
0.00
0.00
0.59
0.07
0.29
1.00
1.00
1.00

0.72
0.65
0.61
0.52
0.45
0.38
0.29
0.21
0.14
0.81
0.73
0.69
0.64
0.56
0.50
0.40
0.34
0.26
0.18
0.81
0.74
0.70
0.63
0.58
0.55
0.46
0.39
0.32
0.21

0.10
0.09
0.09
0.06
0.06
0.04
0.02
0.02
0.01
0.09
0.08
0.10
0.10
0.11
0.08
0.04
0.03
0.02
0.01
0.12
0.08
0.11
0.09
0.09
0.10
0.06
0.05
0.03
0.01

0.84
0.83
0.85
0.83
0.85
0.88
0.89
0.89
0.92
0.87
0.84
0.84
0.84
0.82
0.83
0.86
0.88
0.90
0.91
0.85
0.83
0.82
0.81
0.80
0.82
0.84
0.87
0.88
0.88
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60
71
72
73
74
75
76
7
78
79
70
81
82
83
84
85
86
87
88
89
80
91
92
93
94
95
96
97
98

0.05
0.11
0.15
0.19
0.26
0.33
0.44
0.46
0.40
0.30
0.04
0.09
0.13
0.18
0.23
0.29
0.36
0.42
0.43
0.36
0.04
0.09
0.13
0.17
0.21
0.25
0.31
0.37
0.37

1.00
1.00
1.00
1.00
1.00
1.00
0.71
0.13
0.01
0.00
1.00
1.00
1.00
1.00
1.00
1.00
0.95
1.00
0.34
0.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.63

0.00
0.00
0.00
0.00
0.00
0.00
0.24
0.78
0.98
1.00
0.00
0.00
0.00
0.00
0.00
0.00
0.04
0.00
0.53
1.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.19

0.82
0.75
0.69
0.67
0.62
0.57
0.52
0.45
0.37
0.28
0.82
0.75
0.72
0.67
0.64
0.60
0.56
0.51
0.43
0.33
0.80
0.75
0.71
0.65
0.64
0.60
0.56
0.52
0.49

0.08
0.10
0.12
0.14
0.09
0.10
0.11
0.08
0.05
0.03
0.14
0.11
0.12
0.13
0.13
0.14
0.13
0.12
0.07
0.04
0.12
0.13
0.12
0.12
0.13
0.12
0.11
0.12
0.09

0.85
0.83
0.80
0.80
0.80
0.80
0.83
0.81
0.85
0.87
0.85
0.81
0.81
0.79
0.79
0.78
0.78
0.79
0.82
0.86
0.83
0.81
0.80
0.76
0.77
0.76
0.76
0.75
0.76
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99 | 039 041 0.38 | 0.43 0.08 0.78
mean | 0.26 0.491
Table C.1: Result using SVM, without draws.
C.1.2 With Draws.
SVM Random Forest

Error Total Black Draw White | Total Black Draw White
0 040 082 0.84 0.12 | 0.57 0.68 0.49 0.55
1 051 056 0.63 041 | 0.64 0.10 0.88 0.89
2 054 055  0.55 0.53 | 0.61 048 0.87 0.53
3 054 032 0.59 0.81 | 0.60 0.67 0.86 0.23
4 052 031 0.56 0.86 | 0.50 0.15 0.80 0.82
5 0.50 0.27 0.61 091 048 0.13 0.77 0.93
6 044 020 0.67 092 044 0.19 0.73 0.88
7 040 0.17 0.70 092 | 0.61 057 0.81 0.43
8 031 0.08 0.84 093 | 056 0.53 0.57 0.68
9 019 0.06 0.90 093 038 031 0.86 0.70
10 033 095 0.83 0.10 | 035 092 0.1 0.13
11 050 092 0.59 031 0.61 042 0.74 0.60
12 055 083 0.40 049 | 055 058 0.79 0.36
13 058 0.74 0.26 075 059 027 0.70 0.79
14 056 0.61 0.28 0.84 | 0.55 0.60 0.51 0.53
15 051 039 045 087 052 030 0.62 0.83
16 048 0.28 0.57 0.89 | 049 034 0.52 0.89
17 042 0.17 0.71 0.89 | 0.52 042 0.66 0.63
18 033 010 0.79 092| 035 013 0.79 0.90
19 023 007 0.86 090 031 020 0.71 0.86
20 032 097 0.80 0.10 | 0.72 0.60 0.40 0.82
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21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0.45
0.53
0.57
0.55
0.55
0.50
0.45
0.38
0.30
0.29
0.43
0.51
0.55
0.57
0.55
0.53
0.50
0.44
0.34
0.27
0.40
0.49
0.52
0.53
0.54
0.53
0.51
0.46
0.40

0.91
0.88
0.80
0.62
0.64
0.42
0.28
0.15
0.10
0.92
0.90
0.87
0.89
0.82
0.81
0.63
0.45
0.23
0.12
0.94
0.89
0.86
0.87
0.85
0.84
0.76
0.60
0.41
0.18

0.62
0.42
0.29
0.27
0.24
0.39
0.55
0.69
0.81
0.84
0.65
0.44
0.29
0.18
0.13
0.23
0.39
0.61
0.78
0.84
0.70
0.46
0.25
0.16
0.12
0.14
0.25
0.39
0.67

0.25
0.42
0.66
0.81
0.85
0.87
0.87
0.89
0.87
0.09
0.22
0.42
0.57
0.79
0.84
0.85
0.87
0.89
0.87
0.07
0.18
0.39
0.57
0.75
0.84
0.87
0.89
0.86
0.89

0.54
0.61
0.54
0.56
0.61
0.54
0.55
0.39
0.36
0.31
0.39
0.51
0.53
0.59
0.55
0.53
0.56
0.50
0.36
0.66
0.53
0.48
0.50
0.54
0.53
0.53
0.54
0.51
0.40

0.58
0.33
0.80
0.47
0.81
0.53
0.61
0.17
0.24
0.89
0.87
0.83
0.87
0.24
0.75
0.55
0.66
0.47
0.16
0.48
0.69
0.79
0.77
0.75
0.55
0.38
0.66
0.53
0.16

0.78
0.68
0.62
0.65
0.68
0.46
0.32
0.69
0.63
0.81
0.78
0.44
0.66
0.61
0.40
0.31
0.31
0.40
0.74
0.72
0.56
0.58
0.57
0.19
0.33
0.46
0.36
0.35
0.70

0.42
0.70
0.28
0.55
0.23
0.71
0.81
0.87
0.85
0.12
0.11
0.43
0.20
0.86
0.51
0.85
0.79
0.84
0.85
0.67
0.48
0.32
0.31
0.82
0.82
0.84
0.70
0.84
0.86
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Gaussian Kernel with three fold crossvalidation.
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20
51
52
23
54
25
56
27
o8
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78

0.24
0.38
0.45
0.51
0.53
0.51
0.50
0.48
0.48
0.44
0.22
0.35
0.43
0.51
0.51
0.50
0.46
0.47
0.46
0.46
0.19
0.34
0.42
0.47
0.51
0.48
0.46
0.44
0.42

0.92
0.90
0.89
0.88
0.89
0.86
0.85
0.76
0.56
0.25
0.90
0.90
0.91
0.88
0.90
0.88
0.86
0.82
0.84
0.57
0.93
0.89
0.90
0.89
0.87
0.88
0.88
0.87
0.84

0.87
0.71
0.54
0.30
0.12
0.11
0.10
0.13
0.25
0.57
0.88
0.76
0.59
0.30
0.15
0.11
0.09
0.10
0.09
0.25
0.89
0.83
0.61
0.42
0.17
0.10
0.09
0.08
0.09

0.06
0.16
0.28
0.54
0.78
0.85
0.87
0.86
0.87
0.88
0.06
0.13
0.24
0.55
0.75
0.84
0.85
0.86
0.84
0.84
0.05
0.10
0.23
0.42
0.72
0.82
0.84
0.84
0.85

0.31
0.50
0.43
0.49
0.54
0.51
0.51
0.51
0.49
0.47
0.35
0.70
0.41
0.49
0.49
0.50
0.47
0.48
0.46
0.52
0.23
0.35
0.46
0.51
0.48
0.48
0.48
0.47
0.45

0.84
0.76
0.88
0.85
0.63
0.78
0.62
0.47
0.24
0.35
0.89
0.35
0.89
0.82
0.88
0.79
0.83
0.56
0.49
0.78
0.89
0.87
0.83
0.85
0.86
0.83
0.76
0.73
0.69

0.84
0.55
0.73
0.65
0.50
0.31
0.29
0.45
0.62
0.55
0.63
0.62
0.71
0.53
0.40
0.24
0.18
0.32
0.33
0.17
0.85
0.80
0.53
0.43
0.43
0.37
0.27
0.29
0.25

0.16
0.43
0.14
0.23
0.53
0.61
0.82
0.72
0.81
0.78
0.27
0.78
0.14
0.36
0.42
0.69
0.72
0.77
0.81
0.80
0.10
0.13
0.36
0.48
0.40
0.46
0.66
0.66
0.72
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79 045 066 0.19 0.85| 0.48 037 0.46 0.81
80 0.18 092 0.86 0.06 | 0.64 086 0.29 0.68
81 032 089 0.81 0.11| 050 086 0.37 0.51
82 039 090 0.72 0.16 | 0.41 0.89 0.66 0.21
83 046 090 045 037 051 0.89 0.33 0.56
84 049 088 0.21 0.65 | 050 0.86 0.33 0.56
8 047 087 0.12 0.77| 047 084 042 0.37
86 044 087 0.10 082 | 046 0.75 0.34 0.51
87 042 088 0.09 083 | 043 082 0.15 0.80
88 041 0.86 0.09 083 | 046 054 0.32 0.73
89 043 081 0.09 086 | 0.45 0.72 0.20 0.81
90 020 092 0.87 006 | 021 087 0.84 0.09
91 033 0.89 081 0.10| 0.36 087 0.72 0.18
92 041 088 0.67 019 | 043 087 0.66 0.22
93 045 089 041 040 | 049 087 0.28 0.60
94 046 088 0.22 0.61| 047 085 0.34 0.52
9% 045 086 0.14 0.71| 047 082 0.31 0.55
9 044 086 0.10 081 045 084 0.18 0.72
97 042 084 0.11 079 044 080 0.17 0.74
98 044 084 0.11 080 | 0.46 0.69 0.28 0.65
99 045 085 0.10 0.85| 0.47 071 0.22 0.79

mean  0.43 0.48

Table C.2: Result of draws using SVM.
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